This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015394 #21 Sep 08 2022 08:44:39 %S A015394 1,954437177,1041086085394771065,1115678612484825190455949945, %T A015394 1198243328242032079710778546865654393, %U A015394 1286564714023293732070008866290952083995937401,1381443612518576172240265744739493702803061753684478585 %N A015394 Gaussian binomial coefficient [ n,10 ] for q=-8. %D A015394 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. %D A015394 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. %D A015394 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. %H A015394 Vincenzo Librandi, <a href="/A015394/b015394.txt">Table of n, a(n) for n = 10..120</a> %F A015394 a(n) = Product_{i=1..10} ((-8)^(n-i+1)-1)/((-8)^i-1) (by definition). - _Vincenzo Librandi_, Nov 04 2012 %t A015394 Table[QBinomial[n, 10, -8], {n, 10, 20}] (* _Vincenzo Librandi_, Nov 04 2012 *) %o A015394 (Sage) [gaussian_binomial(n,10,-8) for n in range(10,16)] # _Zerinvary Lajos_, May 25 2009 %o A015394 (Magma) r:=10; q:=-8; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // _Vincenzo Librandi_, Nov 04 2012 %Y A015394 Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13: A015386, A015388, A015390, A015391, A015392, A015393, A015397, A015398, A015399, A015401, A015402. - _Vincenzo Librandi_, Nov 04 2012 %K A015394 nonn,easy %O A015394 10,2 %A A015394 _Olivier Gérard_