This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015397 #20 Sep 08 2022 08:44:39 %S A015397 1,3138105961,11078672649879436966,38576026619154398792076180886, %T A015397 134526791875519431052113309866825757301, %U A015397 469057975890128020293538941741406421614821552253,1635507110993502253670495254060345828123783573932476807608 %N A015397 Gaussian binomial coefficient [ n,10 ] for q=-9. %D A015397 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. %D A015397 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. %D A015397 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. %H A015397 Vincenzo Librandi, <a href="/A015397/b015397.txt">Table of n, a(n) for n = 10..110</a> %F A015397 a(n) = Product_{i=1..10} ((-9)^(n-i+1)-1)/((-9)^i-1) (by definition). - _Vincenzo Librandi_, Nov 04 2012 %t A015397 Table[QBinomial[n, 10, -9], {n, 10, 20}] (* _Vincenzo Librandi_, Nov 04 2012 *) %o A015397 (Sage) [gaussian_binomial(n,10,-9) for n in range(10,16)] # _Zerinvary Lajos_, May 25 2009 %o A015397 (Magma) r:=10; q:=-9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // _Vincenzo Librandi_, Nov 04 2012 %Y A015397 Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13: A015386, A015388, A015390, A015391, A015392, A015393, A015394, A015398, A015399, A015401, A015402. - _Vincenzo Librandi_, Nov 04 2012 %K A015397 nonn,easy %O A015397 10,2 %A A015397 _Olivier Gérard_