This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015399 #19 Sep 08 2022 08:44:39 %S A015399 1,23775972551,621826557818118395106,16116470915170412804822871108406, %T A015399 418048302457998082359053173653182700919721, %U A015399 10843028997901257369999365975865569183708813670389271 %N A015399 Gaussian binomial coefficient [ n,10 ] for q=-11. %D A015399 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. %D A015399 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. %D A015399 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. %H A015399 Vincenzo Librandi, <a href="/A015399/b015399.txt">Table of n, a(n) for n = 10..100</a> %F A015399 a(n) = Product_{i=1..10} ((-11)^(n-i+1)-1)/((-11)^i-1) (by definition). - _Vincenzo Librandi_, Nov 05 2012 %t A015399 Table[QBinomial[n, 10, -11], {n, 10, 20}] (* _Vincenzo Librandi_, Nov 05 2012 *) %o A015399 (Sage) [gaussian_binomial(n,10,-11) for n in range(10,16)] # _Zerinvary Lajos_, May 25 2009 %o A015399 (Magma) r:=10; q:=-11; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Nov 05 2012 %Y A015399 Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13: A015386, A015388, A015390, A015391, A015392, A015393, A015394, A015397, A015398, A015401, A015402. %K A015399 nonn,easy %O A015399 10,2 %A A015399 _Olivier Gérard_