This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015402 #20 Sep 08 2022 08:44:39 %S A015402 1,128011456717,17752510805031727164870, %T A015402 2446220929187500105890055171302510, %U A015402 337244135881870906696294510219932684378716373,46491842741544248966048667175076748587505712393943779761 %N A015402 Gaussian binomial coefficient [ n,10 ] for q=-13. %D A015402 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. %D A015402 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. %D A015402 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. %H A015402 Vincenzo Librandi, <a href="/A015402/b015402.txt">Table of n, a(n) for n = 10..100</a> %H A015402 <a href="/index/Ga#Gaussian_binomial_coefficients">Index entries related to Gaussian binomial coefficients</a>. %F A015402 a(n) = Product_{i=1..10} ((-13)^(n-i+1)-1)/((-13)^i-1). - _M. F. Hasler_, Nov 03 2012 %t A015402 Table[QBinomial[n, 10, -13], {n, 10, 20}] (* _Vincenzo Librandi_, Nov 05 2012 *) %o A015402 (Sage) [gaussian_binomial(n,10,-13) for n in range(10,15)] # _Zerinvary Lajos_, May 25 2009 %o A015402 (PARI) A015402(n,r=10,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ _M. F. Hasler_, Nov 03 2012 %o A015402 (Magma) r:=10; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Nov 05 2012 %Y A015402 Cf. Gaussian binomial coefficients [n,r] for q=-13: A015265 (r=2), A015286 (r=3), A015303 (r=4), A015321 (r=5), A015337 (r=6), A015355 (r=7), A015370 (r=8), A015385 (r=9), A015422 (r=11), A015438 (r=12). - _M. F. Hasler_, Nov 03 2012 %Y A015402 Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13: A015386, A015388, A015390, A015391, A015392, A015393, A015394, A015397, A015398, A015399, A015401. - _Vincenzo Librandi_, Nov 05 2012 %K A015402 nonn,easy %O A015402 10,2 %A A015402 _Olivier Gérard_