This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015414 #18 Sep 08 2022 08:44:39 %S A015414 1,-28242953648,897372484611991440598, %T A015414 -28121923404466184234811544425296, %U A015414 882630281467161063728449241801432249226565,-27697404417453539188846019907159858548132165589760832,869175534545800426775448129124238227336771807766117241522242296 %N A015414 Gaussian binomial coefficient [ n,11 ] for q=-9. %D A015414 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. %D A015414 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. %D A015414 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. %H A015414 Vincenzo Librandi, <a href="/A015414/b015414.txt">Table of n, a(n) for n = 11..100</a> %F A015414 a(n) = Product_{i=1..11} ((-9)^(n-i+1)-1)/((-9)^i-1) (by definition). - _Vincenzo Librandi_, Nov 06 2012 %t A015414 Table[QBinomial[n, 11, -9], {n, 11, 20}] (* _Vincenzo Librandi_, Nov 06 2012 *) %o A015414 (Sage) [gaussian_binomial(n,11,-9) for n in range(11,17)] # _Zerinvary Lajos_, May 28 2009 %o A015414 (Magma) r:=11; q:=-9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Nov 06 2012 %K A015414 sign,easy %O A015414 11,2 %A A015414 _Olivier Gérard_