cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015422 Gaussian binomial coefficient [ n,11 ] for q=-13.

This page as a plain text file.
%I A015422 #21 Sep 08 2022 08:44:40
%S A015422 1,-1664148937320,3000174326048697741925710,
%T A015422 -5374347381421937558314402513609688760,
%U A015422 9632029764916740618771445568833182996026908640493,-17262095767026556801586191040816999767731925288888540910160480
%N A015422 Gaussian binomial coefficient [ n,11 ] for q=-13.
%D A015422 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
%D A015422 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
%D A015422 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
%H A015422 Vincenzo Librandi, <a href="/A015422/b015422.txt">Table of n, a(n) for n = 11..90</a>
%H A015422 <a href="/index/Ga#Gaussian_binomial_coefficients">Index entries related to Gaussian binomial coefficients</a>.
%F A015422 a(n) = Product_{i=1..11} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012
%t A015422 Table[QBinomial[n, 11, -13], {n, 11, 20}] (* _Vincenzo Librandi_, Nov 06 2012 *)
%o A015422 (Sage) [gaussian_binomial(n,11,-13) for n in range(11,16)] # _Zerinvary Lajos_, May 28 2009
%o A015422 (PARI) A015422(n,r=11,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ _M. F. Hasler_, Nov 03 2012
%o A015422 (Magma) r:=11; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Nov 06 2012
%Y A015422 Cf. Gaussian binomial coefficients [n,r] for q=-13: A015265 (r=2), A015286 (r=3), A015303 (r=4), A015321 (r=5), A015337 (r=6), A015355 (r=7), A015370 (r=8), A015385 (r=9), A015402 (r=10), A015438 (r=12). - _M. F. Hasler_, Nov 03 2012
%K A015422 sign,easy
%O A015422 11,2
%A A015422 _Olivier Gérard_