This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015424 #22 Sep 08 2022 08:44:40 %S A015424 1,398581,238300021051,122119467087816511,65710531328480659504924, %T A015424 34778150788062009177434607244,18507923283033747485964552371646724, %U A015424 9831373896055842251635498188040677794164 %N A015424 Gaussian binomial coefficient [ n,12 ] for q=-3. %D A015424 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. %D A015424 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. %D A015424 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. %H A015424 Vincenzo Librandi, <a href="/A015424/b015424.txt">Table of n, a(n) for n = 12..180</a> %F A015424 a(n) = Product_{i=1..12} ((-3)^(n-i+1)-1)/((-3)^i-1) (by definition). - _Vincenzo Librandi_, Nov 06 2012 %t A015424 QBinomial[Range[12,20],12,-3] (* _Harvey P. Dale_, Dec 18 2011 *) %t A015424 Table[QBinomial[n, 12, -3], {n, 12, 20}] (* _Vincenzo Librandi_, Nov 06 2012 *) %o A015424 (Sage) [gaussian_binomial(n,12,-3) for n in range(12,20)] # _Zerinvary Lajos_, May 28 2009 %o A015424 (Magma) r:=12; q:=-3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // _Vincenzo Librandi_, Nov 06 2012 %K A015424 nonn,easy %O A015424 12,2 %A A015424 _Olivier Gérard_