This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015429 #18 Sep 08 2022 08:44:40 %S A015429 1,1865813431,4177511710786827427,9051628015237517688012698587, %T A015429 19718638974813744289323111717093729163, %U A015429 42917665763197914342331213431251480044434903403 %N A015429 Gaussian binomial coefficient [ n,12 ] for q=-6. %D A015429 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. %D A015429 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. %D A015429 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. %H A015429 Vincenzo Librandi, <a href="/A015429/b015429.txt">Table of n, a(n) for n = 12..120</a> %F A015429 a(n) = Product_{i=1..12} ((-6)^(n-i+1)-1)/((-6)^i-1). - _Vincenzo Librandi_, Nov 06 2012 %t A015429 Table[QBinomial[n, 12, -6], {n, 12, 20}] (* _Vincenzo Librandi_, Nov 06 2012 *) %o A015429 (Sage) [gaussian_binomial(n,12,-6) for n in range(12,18)] # _Zerinvary Lajos_, May 28 2009 %o A015429 (Magma) r:=12; q:=-6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Nov 06 2012 %K A015429 nonn,easy %O A015429 12,2 %A A015429 _Olivier Gérard_