This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015432 #20 Sep 08 2022 08:44:40 %S A015432 1,254186582833,72687171253825493271271, %T A015432 20500882161928535478431441379312055, %U A015432 5790937276726544621284284010937628428554805020,1635504033452004972838895174119166771419593874338342173788,461915515256190228639422934162753182948200513062452706826160310202324 %N A015432 Gaussian binomial coefficient [ n,12 ] for q=-9. %D A015432 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. %D A015432 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. %D A015432 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. %H A015432 Vincenzo Librandi, <a href="/A015432/b015432.txt">Table of n, a(n) for n = 12..100</a> %F A015432 a(n) = Product_{i=1..12} ((-9)^(n-i+1)-1)/((-9)^i-1) (by definition). - _Vincenzo Librandi_, Nov 06 2012 %t A015432 Table[QBinomial[n, 12, -9], {n, 12, 20}] (* _Vincenzo Librandi_, Nov 06 2012 *) %o A015432 (Sage) [gaussian_binomial(n,12,-9) for n in range(12,17)] # _Zerinvary Lajos_, May 28 2009 %o A015432 (Magma) r:=12; q:=-9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Nov 06 2012 %K A015432 nonn,easy %O A015432 12,2 %A A015432 _Olivier Gérard_