This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015433 #20 Sep 08 2022 08:44:40 %S A015433 1,909090909091,918273645546455463728191, %T A015433 917356289257199182819017528926537191, %U A015433 917448034060605151598548458052424151513398447191,917438859672008440688621912439351273986143166283578679347191,917439777111785551556734609501952335249856503700731106092153925870347191 %N A015433 Gaussian binomial coefficient [ n,12 ] for q=-10. %D A015433 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. %D A015433 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. %D A015433 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. %H A015433 Vincenzo Librandi, <a href="/A015433/b015433.txt">Table of n, a(n) for n = 12..90</a> %F A015433 a(n) = Product_{i=1..12} ((-10)^(n-i+1)-1)/((-10)^i-1) (by definition). - _Vincenzo Librandi_, Nov 06 2012 %t A015433 Table[QBinomial[n, 12, -10], {n, 12, 20}] (* _Vincenzo Librandi_, Nov 06 2012 *) %o A015433 (Sage) [gaussian_binomial(n,12,-10) for n in range(12,17)] # _Zerinvary Lajos_, May 28 2009 %o A015433 (Magma) r:=12; q:=-10; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Nov 06 2012 %K A015433 nonn,easy %O A015433 12,2 %A A015433 _Olivier Gérard_