This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015443 #66 Aug 31 2024 08:33:57 %S A015443 1,1,9,17,89,225,937,2737,10233,32129,113993,371025,1282969,4251169, %T A015443 14514921,48524273,164643641,552837825,1869986953,6292689553, %U A015443 21252585177,71594101601,241614783017,814367595825,2747285859961 %N A015443 Generalized Fibonacci numbers: a(n) = a(n-1) + 8*a(n-2). %C A015443 Construct a graph as follows: form the graph whose adjacency matrix is the tensor product of that of P_3 and [1,1;1,1], then add a loop at each of the extremity nodes. a(n-1) counts walks of length n between adjacent nodes. - _Paul Barry_, Nov 12 2004 %C A015443 The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 2, 9*a(n-2) equals the number of 9-colored compositions of n with all parts >= 2, such that no adjacent parts have the same color. - _Milan Janjic_, Nov 26 2011 %C A015443 Pisano period lengths: 1, 1, 6, 1, 24, 6, 16, 1, 6, 24, 110, 6, 56, 16, 24, 2, 16, 6, 60, 24, ... - _R. J. Mathar_, Aug 10 2012 %H A015443 Vincenzo Librandi, <a href="/A015443/b015443.txt">Table of n, a(n) for n = 0..1000</a> %H A015443 Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, p. 318 %H A015443 Milan Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Janjic/janjic63.html">On Linear Recurrence Equations Arising from Compositions of Positive Integers</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7. %H A015443 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,8) %F A015443 a(n) = (((1+sqrt(33))/2)^(n+1) - ((1-sqrt(33))/2)^(n+1))/sqrt(33). %F A015443 a(n) = Sum_{k=0..n} A109466(n,k)*(-8)^(n-k). - _Philippe Deléham_, Oct 26 2008 %F A015443 G.f.: 1/(1-x-8*x^2). - _R. J. Mathar_, Apr 07 2011 %F A015443 a(n) = (Sum_{1<=k<=n+1, k odd} C(n+1,k)*33^((k-1)/2))/2^n. - _Vladimir Shevelev_, Feb 05 2014 %t A015443 CoefficientList[Series[1/(1-x-8*x^2), {x,0,50}], x] (* _G. C. Greubel_, Apr 30 2017 *) %o A015443 (Sage) [lucas_number1(n,1,-8) for n in range(1, 27)] # _Zerinvary Lajos_, Apr 22 2009 %o A015443 (Magma) [ n eq 1 select 1 else n eq 2 select 1 else Self(n-1)+8*Self(n-2): n in [1..30] ]; // _Vincenzo Librandi_, Aug 23 2011 %o A015443 (PARI) Vec(1/(1-x-8*x^2)+O(x^99)) \\ _Charles R Greathouse IV_, Feb 03 2014 %Y A015443 Cf. A015442, A015441, A100302, A100303. %K A015443 nonn,easy %O A015443 0,3 %A A015443 _Olivier Gérard_