This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015592 #28 Aug 17 2024 20:40:28 %S A015592 0,1,10,111,1220,13421,147630,1623931,17863240,196495641,2161452050, %T A015592 23775972551,261535698060,2876892678661,31645819465270, %U A015592 348104014117971,3829144155297680,42120585708274481,463326442791019290,5096590870701212191,56062499577713334100 %N A015592 a(n) = 10*a(n-1) + 11*a(n-2). %C A015592 Number of walks of length n between any two distinct nodes of the complete graph K_12. Example: a(2)=10 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHIJKL are ACB, ADB, AEB, AFB, AGB, AHB, AIB, AJB, AKB and ALB. - _Emeric Deutsch_, Apr 01 2004 %C A015592 General form: k=11^n-k. Also: A001045, A078008, A097073, A115341, A015518, A054878, A015521, A109499, A015531, A109500, A109501, A015552, A093134, A015565, A015577, A015585. - _Vladimir Joseph Stephan Orlovsky_, Dec 11 2008 %H A015592 Vincenzo Librandi, <a href="/A015592/b015592.txt">Table of n, a(n) for n = 0..900</a> %H A015592 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,11). %F A015592 a(n) = 11^(n-1) - a(n-1). G.f.: x/(1 - 10x - 11x^2). - _Emeric Deutsch_, Apr 01 2004 %F A015592 From _Elmo R. Oliveira_, Aug 17 2024: (Start) %F A015592 E.g.f.: exp(5*x)*sinh(6*x)/6. %F A015592 a(n) = (11^n - (-1)^n)/12. (End) %t A015592 k=0;lst={k};Do[k=11^n-k;AppendTo[lst, k], {n, 0, 5!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Dec 11 2008 *) %o A015592 (Sage) [lucas_number1(n,10,-11) for n in range(0, 18)] # _Zerinvary Lajos_, Apr 26 2009 %o A015592 (Magma) [-(1/12)*(-1)^n+(1/12)*11^n: n in [0..20]]; // _Vincenzo Librandi_, Oct 11 2011 %Y A015592 Cf. A001045, A078008, A097073, A115341, A015518, A054878, A015521, A109499, A015531, A109500, A109501, A015552, A093134, A015565, A015577, A015585. - _Vladimir Joseph Stephan Orlovsky_, Dec 11 2008 %K A015592 nonn,easy %O A015592 0,3 %A A015592 _Olivier Gérard_