This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015737 #34 Nov 03 2023 22:32:36 %S A015737 0,0,1,1,1,1,1,2,3,4,4,5,6,8,10,12,14,17,20,24,29,34,40,47,55,64,75, %T A015737 87,101,117,135,155,179,205,235,269,307,350,399,453,514,583,660,746, %U A015737 843,950,1070,1205,1354,1520,1705,1910,2138,2392 %N A015737 Number of 3's in partitions of n into distinct parts. %H A015737 Vaclav Kotesovec, <a href="/A015737/b015737.txt">Table of n, a(n) for n = 1..10000</a> (first 70 terms from Vincenzo Librandi) %F A015737 G.f.: (x^3/(1 + x^3)) * Product_{j >= 1} (1 + x^j). - _Emeric Deutsch_, Apr 17 2006 %F A015737 Corresponding g.f. for "number of k's" is (x^k/(1 + x^k)) * Product_{j >= 1} (1 + x^j). - _Joerg Arndt_, Feb 20 2014 %F A015737 a(n) ~ exp(Pi*sqrt(n/3)) / (8*3^(1/4)*n^(3/4)). - _Vaclav Kotesovec_, Oct 30 2015 %e A015737 a(9) = 3 because in the eight partitions of 9 into distinct parts, namely [9], [8, 1], [7, 2], [6, 3], [6, 2, 1], [5, 4], [5, 3, 1] and [4, 3, 2], only three contain 3. %p A015737 g:=x^3*product(1+x^j,j=1..60)/(1+x^3): gser:=series(g,x=0,57): seq(coeff(gser,x,n),n=1..54); # _Emeric Deutsch_, Apr 17 2006 %t A015737 Table[Count[Select[IntegerPartitions[n],Length[Union[#]] == Length[#] &], _?(MemberQ[#, 3] &)], {n, 60}] (* _Harvey P. Dale_, Aug 19 2011 *) %t A015737 nmax = 100; Rest[CoefficientList[Series[x^3/(1 + x^3) * Product[1 + x^k, {k, 1, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Oct 30 2015 *) %Y A015737 Cf. A000009. %K A015737 nonn %O A015737 1,8 %A A015737 _Clark Kimberling_ %E A015737 Example clarified by _Harvey P. Dale_, Aug 19 2011