A015740 Number of 5's in all the partitions of n into distinct parts.
0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 4, 4, 6, 8, 9, 11, 14, 16, 19, 23, 27, 32, 38, 45, 53, 62, 72, 84, 97, 112, 130, 150, 172, 199, 228, 260, 298, 340, 386, 440, 500, 566, 642, 727, 820, 926, 1044, 1174, 1321, 1484, 1664, 1866, 2090
Offset: 1
Keywords
Examples
a(9)=2 because in the 8 (=A000009(9)) partitions of 9 into distinct parts, namely [9],[8,1],[7,2],[6,3],[6,2,1],[5,4],[5,3,1] and [4,3,2] we have altogether two parts equal to 5.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
Programs
-
Maple
g:=x^5*product(1+x^j,j=1..60)/(1+x^5): gser:=series(g,x=0,57): seq(coeff(gser,x,n),n=1..54); # Emeric Deutsch, Apr 17 2006
-
Mathematica
nmax = 100; Rest[CoefficientList[Series[x^5/(1+x^5) * Product[1+x^k, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Oct 30 2015 *) Table[Count[Flatten@Select[IntegerPartitions[n], DeleteDuplicates[#] == # &], 5], {n, 54}] (* Robert Price, May 16 2020 *)
Formula
G.f.: x^5*product(j>=1, 1+x^j )/(1+x^5). - Emeric Deutsch, Apr 17 2006
Corresponding g.f. for "number of k's" is x^k/(1+x^k)*prod(n>=1, 1+x^n ). [Joerg Arndt, Feb 20 2014]
a(n) ~ exp(Pi*sqrt(n/3)) / (8*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Oct 30 2015