This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015741 #26 May 16 2020 21:01:53 %S A015741 0,0,0,0,0,1,1,1,2,2,3,3,4,5,6,8,9,12,14,17,21,24,29,34,40,47,55,65, %T A015741 75,88,102,118,137,157,181,208,238,272,311,355,404,460,522,592,671, %U A015741 758,856,966,1088,1224,1377,1546,1734,1944 %N A015741 Number of 6's in all the partitions of n into distinct parts. %C A015741 a(n+6) = A015753(n). - _Alois P. Heinz_, Aug 24 2011 %H A015741 Vaclav Kotesovec, <a href="/A015741/b015741.txt">Table of n, a(n) for n = 1..10000</a> %F A015741 G.f.: x^6 * product(j>=1, 1+x^j )/(1+x^6). - _Emeric Deutsch_, Apr 17 2006 %F A015741 Corresponding g.f. for "number of k's" is x^k/(1+x^k)*prod(n>=1, 1+x^n ). [_Joerg Arndt_, Feb 20 2014] %F A015741 a(n) ~ exp(Pi*sqrt(n/3)) / (8*3^(1/4)*n^(3/4)). - _Vaclav Kotesovec_, Oct 30 2015 %e A015741 a(9) = 2 because in the 8 (=A000009(9)) partitions of 9 into distinct parts, namely [9], [8,1], [7,2], [6,3], [6,2,1], [5,4], [5,3,1] and [4,3,2] we have altogether two parts equal to 6. %p A015741 g:=x^6*product(1+x^j,j=1..60)/(1+x^6): gser:=series(g,x=0,57): seq(coeff(gser,x,n),n=1..54); # _Emeric Deutsch_, Apr 17 2006 %t A015741 nmax = 100; Rest[CoefficientList[Series[x^6/(1+x^6) * Product[1+x^k, {k, 1, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Oct 30 2015 *) %t A015741 Table[Count[Flatten@Select[IntegerPartitions[n], DeleteDuplicates[#] == # &], 6], {n, 54}] (* _Robert Price_, May 16 2020 *) %Y A015741 Cf. A015753. %K A015741 nonn %O A015741 1,9 %A A015741 _Clark Kimberling_