This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015744 #31 Jul 03 2025 18:22:46 %S A015744 1,1,0,1,2,2,2,3,4,5,6,7,9,11,13,16,19,22,27,32,37,44,52,60,70,82,95, %T A015744 110,127,146,169,194,221,254,291,331,377,429,487,553,626,707,800,903, %U A015744 1016,1145,1288,1445,1622,1819,2036,2278,2546,2842,3172,3536,3936,4381 %N A015744 Number of partitions of n into distinct parts, none being 2. %C A015744 With offset 2 (and a(0)=a(1)=0) the number of 2's in all partitions of n into distinct parts. [_Joerg Arndt_, Feb 20 2014] %H A015744 Vincenzo Librandi, <a href="/A015744/b015744.txt">Table of n, a(n) for n = 0..1000</a> %H A015744 Cristina Ballantine, Mircea Merca, <a href="https://doi.org/10.26493/1855-3974.1782.127">On identities of Watson type</a>, Ars Mathematica Contemporanea (2019) Vol. 17, 277-290. %F A015744 G.f.: (1+x)*product(j>=3, 1+x^j ). - _Emeric Deutsch_, Apr 09 2006 %F A015744 a(n+2)=sum_{k=1..floor(n/2)} (-1)^(k-1)*A000009(n-2*k). - _Mircea Merca_, Feb 20 2014 %F A015744 a(n) ~ exp(Pi*sqrt(n/3)) / (8*3^(1/4)*n^(3/4)). - _Vaclav Kotesovec_, Oct 30 2015 %e A015744 a(8)=4 because we have [8],[7,1],[5,3] and [4,3,1]. %p A015744 g:=(1+x)*product(1+x^j,j=3..80): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=0..57); # _Emeric Deutsch_, Apr 09 2006 %t A015744 CoefficientList[Series[Product[1+q^n, {n, 1, 60}]/(1+q^2), {q, 0, 60}], q] %t A015744 Table[Count[Select[IntegerPartitions[n], DeleteDuplicates[#] == # &], x_ /; ! MemberQ[x, 2]], {n, 0, 57}] (* _Robert Price_, May 17 2020 *) %Y A015744 Cf. A025147, A015745, A015746, A015750, A015753, A015754, A015755. %K A015744 nonn %O A015744 0,5 %A A015744 _Clark Kimberling_ %E A015744 Corrected and extended by _Dean Hickerson_, Oct 10 2001