This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015949 #81 Dec 15 2024 11:38:14 %S A015949 1,2,10,50,250,1250,5050,6250,11810,25250,31250,59050,126250,156250, %T A015949 295250,510050,631250,750250,781250,1476250,2125250,2550250,3156250, %U A015949 3751250,3906250,5964050,7381250,10626250,12751250,13947610,15781250 %N A015949 Numbers k such that k | 3^k + 1. %C A015949 a(n) mod 20 = 10 for n >= 3. - _G. C. Greubel_, Nov 05 2018 %C A015949 This sequence is infinite, because for n > 1, 3^a(n) + 1 is in this sequence. - _Jinyuan Wang_, Nov 06 2018 %C A015949 For the provided data, if k is a term then p*k is a term where p is an odd divisor of k. - _David A. Corneth_, Nov 06 2018 %H A015949 Giovanni Resta, <a href="/A015949/b015949.txt">Table of n, a(n) for n = 1..180</a> (first 100 terms from G. C. Greubel) %t A015949 Do[If[PowerMod[3, n, n] + 1 == n, Print[n]], {n, 1, 10^7}] (* _Jinyuan Wang_, Nov 01 2018 *) %t A015949 Select[Range[16*10^6],PowerMod[3,#,#]==#-1&] (* _Harvey P. Dale_, Dec 15 2024 *) %o A015949 (PARI) for(n=1, 10^7, if(Mod(3, n)^n==-1, print1(n, ", "))) \\ _Jinyuan Wang_, Nov 01 2018 %o A015949 (Magma) [n: n in [1..2*10^7]| Modexp(3, n, n)+1 eq n]; // _Vincenzo Librandi_, Nov 01 2018 %Y A015949 Cf. A034472 (3^n+1). %Y A015949 Cf. A006521 (k | 2^k + 1), A015950 (k | 4^k + 1), A015951 (k | 5^k + 1). %Y A015949 Column k=3 of A333429. %K A015949 nonn %O A015949 1,2 %A A015949 _Robert G. Wilson v_ %E A015949 Corrected by _David W. Wilson_