This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015999 #28 Mar 13 2021 10:04:13 %S A015999 1,2,2,3,2,8,2,4,3,8,2,14,2,8,8,5,2,14,2,14,8,8,2,20,3,8,4,14,2,44,2, %T A015999 6,8,8,8,25,2,8,8,20,2,44,2,14,14,8,2,26,3,14,8,14,2,20,8,20,8,8,2,80, %U A015999 2,8,14,7,8,44,2,14,8,44,2,36,2,8,14,14,8,44,2,26,5,8,2,80,8,8 %N A015999 a(n) = (tau(n^5) + 4)/5. %H A015999 Antti Karttunen, <a href="/A015999/b015999.txt">Table of n, a(n) for n = 1..10000</a> %p A015999 with(numtheory): A015999:=n->(tau(n^5)+4)/5: seq(A015999(n), n=1..80); # _Wesley Ivan Hurt_, Apr 10 2015 %t A015999 (DivisorSigma[0, Range[80]^5]+4)/5 (* _Wesley Ivan Hurt_, Apr 10 2015 *) %o A015999 (PARI) %o A015999 A015999(n) = (numdiv(n^5)+4)/5; %o A015999 for(n=1, 10000, write("b015999.txt", n, " ", A015999(n))); %o A015999 \\ _Antti Karttunen_, Jan 17 2017 %o A015999 (Python) %o A015999 from sympy import divisor_count %o A015999 def a(n): return (divisor_count(n**5) + 4)//5 %o A015999 print([a(n) for n in range(1, 101)]) # _Indranil Ghosh_, Apr 14 2017 %Y A015999 Cf. A000005, A018892, A015995, A015996, A016001, A016002, A016003, A016005, A016006, A016007, A016008, A016012. %K A015999 nonn,easy %O A015999 1,2 %A A015999 _Robert G. Wilson v_ %E A015999 Definition corrected by _Vladeta Jovovic_, Sep 03 2005