This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A016014 #52 Apr 23 2023 15:27:51 %S A016014 1,1,1,2,1,1,2,1,1,2,1,3,2,1,1,3,3,1,5,1,1,2,1,2,2,1,2,2,1,1,5,3,1,2, %T A016014 1,1,2,3,1,3,1,4,2,1,2,3,3,1,2,1,1,3,1,1,3,1,2,2,6,2,3,3,1,2,1,3,2,1, %U A016014 1,2,4,3,2,1,1,3,3,1,2,4,1,5,1,2,6,1,2,2,1,1,3,7,2,5,1,1,2,1,1 %N A016014 Least k such that 2*n*k + 1 is a prime. %C A016014 Is the sequence bounded? - _Zak Seidov_, Mar 25 2014 %C A016014 Answer: No, for any given N a number n such that a(n) > N can be constructed by the Chinese Remainder Theorem, see A239727. - _Charles R Greathouse IV_, Mar 25 2014 %C A016014 a(n) = 1 for n in A005097. - _Robert Israel_, Oct 26 2016 %H A016014 Zak Seidov, <a href="/A016014/b016014.txt">Table of n, a(n) for n = 1..10000</a> %p A016014 f:= proc(n) local k; %p A016014 for k from 1 do if isprime(2*n*k+1) then return k fi od %p A016014 end proc: %p A016014 map(f, [$1..100]); # _Robert Israel_, Oct 26 2016 %t A016014 Do[k = 1; cp = n*k + 1; While[ ! PrimeQ[cp], k++; cp = n*k + 1]; Print[k], {n, 2, 400, 2}] (* _Lei Zhou_, Feb 23 2005 *) %t A016014 lk[n_]:=Module[{k=1},While[!PrimeQ[2n k+1],k++];k]; Array[lk,100] (* _Harvey P. Dale_, Apr 23 2023 *) %o A016014 (PARI) a(n)=my(k); while(!isprime(2*n*(k++)+1),);k \\ _Charles R Greathouse IV_, Mar 25 2014 %o A016014 (Python) %o A016014 from sympy import isprime %o A016014 def a(n): %o A016014 k = 1 %o A016014 while not isprime(2*n*k + 1): k += 1 %o A016014 return k %o A016014 print([a(n) for n in range(1, 100)]) # _Michael S. Branicky_, Mar 28 2022 %Y A016014 Cf. A005097, A103961. %Y A016014 A070846 contains the corresponding primes. %Y A016014 Records are in A239746 with indices in A239727. %K A016014 nonn %O A016014 1,4 %A A016014 _Robert G. Wilson v_