cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016032 Least positive integer that is the sum of two squares of positive integers in exactly n ways.

This page as a plain text file.
%I A016032 #49 Feb 16 2025 08:32:33
%S A016032 2,50,325,1105,8125,5525,105625,27625,71825,138125,5281250,160225,
%T A016032 1221025,2442050,1795625,801125,446265625,2082925,41259765625,4005625,
%U A016032 44890625,30525625,61051250,5928325,303460625,53955078125,35409725,100140625,1289367675781250
%N A016032 Least positive integer that is the sum of two squares of positive integers in exactly n ways.
%D A016032 A. Beiler, Recreations in the Theory of Numbers, Dover, pp. 140-141.
%H A016032 T. D. Noe and Ray Chandler, <a href="/A016032/b016032.txt">Table of n, a(n) for n = 1..2178</a> (a(2179) exceeds 1000 digits).
%H A016032 C. Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_062.htm">Puzzle 62</a>
%H A016032 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SquareNumber.html">Square Number</a>
%H A016032 G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~twosquares.en.html">Two squares</a>
%H A016032 <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a>
%F A016032 a(n) = min(2*A018782(2n-1), A018782(2n), A018782(2n+1)).
%e A016032 a(0) = 1 as 1 is the least positive integer not expressible as the sum of two squared positives.
%e A016032 a(1) = 2 from 2 = 1^2 + 1^2.
%e A016032 a(2) = 50 from 50 = 1^2 + 7^2 = 5^2 + 5^2.
%t A016032 Array[Block[{k = 1}, While[Length@ DeleteCases[PowersRepresentations[k, 2, 2], _?(! FreeQ[#, 0] &)] != #, k++]; k] &, 6] (* _Michael De Vlieger_, Mar 31 2019 *)
%o A016032 (PARI) b(k)=my(c=0);for(i=1,sqrtint(k\2),if(issquare(k-i^2),c+=1));c \\ A025426
%o A016032 for(n=1,10,k=1;while(k,if(b(k)==n,print1(k,", ");break);k+=1)) \\ _Derek Orr_, Mar 20 2019
%Y A016032 Cf. A018825, A048610, A025284-A025293 (first entries).
%Y A016032 See A000446, A124980 and A093195  for other versions.
%K A016032 nonn,nice
%O A016032 1,1
%A A016032 _Robert G. Wilson v_
%E A016032 Corrected and extended by _Jud McCranie_
%E A016032 Definition improved by several correspondents, Nov 12 2007