This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A016038 #83 Aug 04 2024 19:08:32 %S A016038 0,1,2,3,4,6,11,19,47,53,79,103,137,139,149,163,167,179,223,263,269, %T A016038 283,293,311,317,347,359,367,389,439,491,563,569,593,607,659,739,827, %U A016038 853,877,977,983,997,1019,1049,1061,1187,1213,1237,1367,1433,1439,1447,1459 %N A016038 Strictly non-palindromic numbers: n is not palindromic in any base b with 2 <= b <= n-2. %C A016038 All elements of the sequence greater than 6 are prime (ab = a(b-1) + a or a^2 = (a-1)^2 + 2(a-1) + 1). Mersenne and Fermat primes are not in the sequence. %C A016038 Additional comments: if you can factor a number as a*b then it is a palindrome in base b-1, where b is the larger of the two factors. (If the number is a square, then it can be a palindrome in an additional way, in base (sqrt(n)-1)). The a*b form does not work when a = b-1, but of course there are no two consecutive primes (other than 2,3, which explains the early special cases), so if you can factor a number as a*(a-1), then another factorization also exists. - Michael B Greenwald (mbgreen(AT)central.cis.upenn.edu), Jan 01 2002 %C A016038 Note that no prime p is palindromic in base b for the range sqrt(p) < b < p-1. Hence to find non-palindromic primes, we need only examine bases up to floor(sqrt(p)), which greatly reduces the computational effort required. - _T. D. Noe_, Mar 01 2008 %C A016038 No number n is palindromic in any base b with n/2 <= b <= n-2, so this is also numbers not palindromic in any base b with 2 <= b <= n/2. %C A016038 Sequence A047811 (this sequence without 0, 1, 2, 3) is mentioned in the Guy paper, in which he reports on unsolved problems. This problem came from Mario Borelli and Cecil B. Mast. The paper poses two questions about these numbers: (1) Can palindromic or nonpalindromic primes be otherwise characterized? and (2) What is the cardinality, or the density, of the set of palindromic primes? Of the set of nonpalindromic primes? - _T. D. Noe_, Apr 18 2011 %C A016038 From _Robert G. Wilson v_, Oct 22 2014 and Nov 03 2014: (Start) %C A016038 Define f(n) to be the number of palindromic representations of n in bases b with 1 < b < n, see A135551. %C A016038 For A016038, f(n) = 1 for all n. Only the numbers n = 0, 1, 4 and 6 are not primes. %C A016038 For f(n) = 2, all terms are prime or semiprimes (prime omega <= 2 (A037143)) with the exception of 8 and 12; %C A016038 For f(n) = 3, all terms are at most 3-almost primes (prime omega <= 3 (A037144)), with the exception of 16, 32, 81 and 625; %C A016038 For f(n) = 4, all terms are at most 4-almost primes, with the exception of 64 and 243; %C A016038 For f(n) = 5, all terms are at most 5-almost primes, with the exception of 128, 256 and 729; %C A016038 For f(n) = 6, all terms are at most 6-almost primes, with the sole exception of 2187; %C A016038 For f(n) = 7, all terms are at most 7-almost primes, with the exception of 512, 2048 and 19683; etc. (End) %D A016038 Paul Guinand, Strictly non-palindromic numbers, unpublished note, 1996. %H A016038 T. D. Noe, <a href="/A016038/b016038.txt">Table of n, a(n) for n = 1..10001</a> %H A016038 K. S. Brown, <a href="http://www.mathpages.com/home/kmath359.htm">On General Palindromic Numbers</a> %H A016038 Patrick De Geest, <a href="http://www.worldofnumbers.com/nobase10.htm">Palindromic numbers beyond base 10</a> %H A016038 R. K. Guy, <a href="http://www.jstor.org/stable/2325149">Conway's RATS and other reversals</a>, Amer. Math. Monthly, 96 (1989), 425-428. %H A016038 John P. Linderman, <a href="/A135549/a135549.html">Description of A135549-A016038</a> %H A016038 John P. Linderman, <a href="/A135549/a135549.txt">Perl program</a> [Use the command: HASNOPALINS=1 palin.pl] %F A016038 a(n) = A047811(n-4) for n > 4. - _M. F. Hasler_, Sep 08 2015 %t A016038 PalindromicQ[n_, base_] := FromDigits[Reverse[IntegerDigits[n, base]], base] == n; PalindromicBases[n_] := Select[Range[2, n-2], PalindromicQ[n, # ] &]; StrictlyPalindromicQ[n_] := PalindromicBases[n] == {}; Select[Range[150], StrictlyPalindromicQ] (* _Herman Beeksma_, Jul 16 2005*) %t A016038 palindromicBases[n_] := Module[{p}, Table[p = IntegerDigits[n, b]; If[ p == Reverse[p], {b, p}, Sequence @@ {}], {b, 2, n - 2}]]; lst = {0, 1, 4, 6}; Do[ If[ Length@ palindromicBases@ Prime@n == 0, AppendTo[lst, Prime@n]], {n, 10000}]; lst (* _Robert G. Wilson v_, Mar 08 2008 *) %t A016038 Select[Range@ 1500, Function[n, NoneTrue[Range[2, n - 2], PalindromeQ@ IntegerDigits[n, #] &]]] (* _Michael De Vlieger_, Dec 24 2017 *) %o A016038 (PARI) is(n)=!for(b=2,n\2,Vecrev(d=digits(n,b))==d&&return) \\ _M. F. Hasler_, Sep 08 2015 %o A016038 (Python) %o A016038 from itertools import count, islice %o A016038 from sympy.ntheory.factor_ import digits %o A016038 def A016038_gen(startvalue=0): # generator of terms >= startvalue %o A016038 return filter(lambda n: all((s := digits(n,b)[1:])[:(t:=len(s)+1>>1)]!=s[:-t-1:-1] for b in range(2,n-1)), count(max(startvalue,0))) %o A016038 A016038_list = list(islice(A016038_gen(),30)) # _Chai Wah Wu_, Jan 17 2024 %Y A016038 Cf. A047811, A050812, A050813, A037183, A135550, A135551, A135549, A138348. %K A016038 nonn,base,nice,easy %O A016038 1,3 %A A016038 _Robert G. Wilson v_ %E A016038 Extended and corrected by _Patrick De Geest_, Oct 15 1999 %E A016038 Edited by _N. J. A. Sloane_, Apr 09 2008