This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A016075 #39 Feb 14 2025 12:14:43 %S A016075 1,38,905,17290,289821,4453638,64331905,887339330,11810819141, %T A016075 152832918238,1933092302505,23997027406170,293289532268461, %U A016075 3537885908902838,42204462297434705,498697803478957810,5844588402226277781,68011678300853991438,786547256602640400505 %N A016075 Expansion of 1/((1-8*x)*(1-9*x)*(1-10*x)*(1-11*x)). %H A016075 Vincenzo Librandi, <a href="/A016075/b016075.txt">Table of n, a(n) for n = 0..200</a> %H A016075 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (38,-539,3382,-7920) %F A016075 If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*Stirling2(k,j)*x^(m-k) then a(n-3) = f(n,3,8), (n>=3). - _Milan Janjic_, Apr 26 2009 %F A016075 a(n) = 38*a(n-1) - 539*a(n-2) + 3382*a(n-3) - 7920*a(n-4), n>=4. - _Vincenzo Librandi_, Mar 17 2011 %F A016075 a(n) = 21*a(n-1) - 110*a(n-2) + 9^(n+1) - 8^(n+1), n>=2. - _Vincenzo Librandi_, Mar 17 2011 %F A016075 a(n) = 11^(n+3)/6 -5*10^(n+2) -4*8^(n+2)/3 + 9^(n+3)/2. - _R. J. Mathar_, Mar 18 2011 %t A016075 CoefficientList[Series[1/((1-8*x)*(1-9*x)*(1-10*x)*(1-11*x)), {x,0,20}], x] (* _Vincenzo Librandi_, Jun 23 2013 *) %o A016075 (Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-8*x)*(1-9*x)*(1-10*x)*(1-11*x)))); // _Vincenzo Librandi_, Jun 24 2013 %o A016075 (Magma) I:=[1, 38, 905, 17290]; [n le 4 select I[n] else 38*Self(n-1)-539*Self(n-2)+3382*Self(n-3)-7920*Self(n-4): n in [1..20]]; // _Vincenzo Librandi_, Jun 24 2013 %o A016075 (PARI) x='x+O('x^30); Vec(1/((1-8*x)*(1-9*x)*(1-10*x)*(1-11*x))) \\ _G. C. Greubel_, Feb 07 2018 %Y A016075 Cf. A000453, A025211, A028025, A003468, A028165, A028200, A016109, A016094. %K A016075 nonn,easy %O A016075 0,2 %A A016075 _N. J. A. Sloane_