This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A016094 #27 Feb 13 2025 07:53:49 %S A016094 1,42,1105,23310,431221,7309722,116419465,1769717670,25948716541, %T A016094 369730963602,5147200519825,70298695224030,944897655707461, %U A016094 12530341519244682,164265473257148185,2132247784185258390 %N A016094 Expansion of 1/((1-9*x)*(1-10*x)*(1-11*x)*(1-12*x)). %H A016094 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (42,-659,4578,-11880) %F A016094 If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*Stirling2(k,j)*x^(m-k) then a(n-3) = f(n,3,9), n >= 3. - _Milan Janjic_, Apr 26 2009 %F A016094 a(n) = 42*a(n-1) - 659*a(n-2) + 4578*a(n-3) - 11880*a(n-4), n >= 4. - _Vincenzo Librandi_, Mar 18 2011 %F A016094 a(n) = 23*a(n-1) - 132*a(n-2) + 10^(n+1) - 9^(n+1), n >= 2. - _Vincenzo Librandi_, Mar 18 2011 %F A016094 a(n) = 5*10^(n+2) + 2*12^(n+2) - 11^(n+3)/2 - 3*9^(n+2)/2. - _R. J. Mathar_, Mar 19 2011 %t A016094 CoefficientList[Series[1/((1-9x)(1-10x)(1-11x)(1-12x)) ,{x,0,20}],x] (* or *) LinearRecurrence[{42,-659,4578,-11880},{1,42,1105,23310},20] (* _Harvey P. Dale_, Dec 14 2021 *) %Y A016094 Cf. A000453, A025211, A028025, A003468, A028165, A028200, A016109, A016075. %K A016094 nonn %O A016094 0,2 %A A016094 _N. J. A. Sloane_