cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016166 Expansion of 1/((1-5*x)*(1-12*x)).

This page as a plain text file.
%I A016166 #32 Nov 10 2024 02:29:52
%S A016166 1,17,229,2873,35101,424337,5107669,61370153,736832461,8843942657,
%T A016166 106137077509,1273693758233,15284569239421,183416051576177,
%U A016166 2200998722429749,26412015186735113,316944334828711981,3803332780883996897,45639997185305228389,547679985297149068793
%N A016166 Expansion of 1/((1-5*x)*(1-12*x)).
%H A016166 G. C. Greubel, <a href="/A016166/b016166.txt">Table of n, a(n) for n = 0..920</a>
%H A016166 Daniele A. Gewurz and Francesca Merola, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL6/Gewurz/gewurz5.html">Sequences realized as Parker vectors of oligomorphic permutation groups</a>, J. Integer Seqs., Vol. 6, 2003.
%H A016166 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (17,-60).
%F A016166 G.f.: 1/((1-5*x)*(1-12*x)).
%F A016166 a(n) = (12^(n+1) - 5^(n+1))/7. - _Bruno Berselli_, Feb 09 2011
%F A016166 a(n) = 12*a(n-1) + 5^n, a(0)=1. - _Vincenzo Librandi_, Feb 09 2011
%F A016166 a(n) = 17*a(n-1) - 60*a(n-2), n > 1. - _Wesley Ivan Hurt_, Aug 28 2015
%F A016166 E.g.f.: (1/7)*(12*exp(12*x) - 5*exp(5*x)). - _G. C. Greubel_, Nov 10 2024
%p A016166 A016166:=n->(12^(n+1)-5^(n+1))/7: seq(A016166(n), n=0..30); # _Wesley Ivan Hurt_, Aug 28 2015
%t A016166 LinearRecurrence[{17,-60}, {1,17}, 41] (* _Vladimir Joseph Stephan Orlovsky_, Feb 08 2011 *)
%t A016166 Table[(12^(n+1)-5^(n+1))/7, {n,0,40}] (* _Wesley Ivan Hurt_, Aug 28 2015 *)
%o A016166 (Magma) [(12^(n+1)-5^(n+1))/7 : n in [0..30]]; // _Wesley Ivan Hurt_, Aug 28 2015
%o A016166 (SageMath)
%o A016166 A016166=BinaryRecurrenceSequence(17,-60,1,17)
%o A016166 [A016166(n) for n in range(41)] # _G. C. Greubel_, Nov 10 2024
%Y A016166 Cf. A016161.
%K A016166 nonn,easy
%O A016166 0,2
%A A016166 _N. J. A. Sloane_