This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A016177 #65 Nov 29 2024 19:01:16 %S A016177 0,1,15,169,1695,15961,144495,1273609,11012415,93864121,791266575, %T A016177 6612607849,54878189535,452866803481,3719823438255,30436810578889, %U A016177 248242046141055,2019169299698041,16385984911571535,132716292890482729,1073129238309234975,8664826172771491801 %N A016177 a(n) = 8^n - 7^n. %C A016177 Number of ways to assign truth values to n ternary conjunctions connected by disjunctions such that the proposition is true. For example, a(2) = 15, since for the proposition '(a & b & c) v (d & e & f)' there are 15 assignments that make the proposition true. - _Ori Milstein_, Dec 22 2022 %C A016177 Equivalently, the number of length-n words over the alphabet {0,1,...,7} with at least one letter = 7. - _Joerg Arndt_, Jan 01 2023 %C A016177 a(n) is also the number of n-digit numbers whose smallest decimal digit is 2. - _Stefano Spezia_, Nov 15 2023 %H A016177 G. C. Greubel, <a href="/A016177/b016177.txt">Table of n, a(n) for n = 0..1000</a> %H A016177 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (15,-56). %F A016177 G.f.: x/((1-7x)*(1-8x)). %F A016177 a(n) = numerator(f(n-1)) where f(n) = Integral_{x=0..1/4} (1-x/2)^n dx. And denominator(f(n)) = 4*(n+1)*8^n. - Al Hakanson (hawkuu(AT)excite.com), Feb 22 2004 [corrected by _Michel Marcus_, Dec 23 2022] %F A016177 a(n) = 15*a(n-1) - 56*a(n-2), n > 1. - _Philippe Deléham_, Jan 01 2009 %F A016177 E.g.f.: e^(8*x) - e^(7*x). - _Mohammad K. Azarian_, Jan 14 2009 %F A016177 a(n) = 8*a(n-1) + 7^(n-1), a(0)=0. - _Vincenzo Librandi_, Feb 09 2011 %t A016177 Table[8^n - 7^n, {n, 0, 20}] (* _Harvey P. Dale_, Jan 31 2011 *) %o A016177 (PARI) a(n)=8^n-7^n \\ _Charles R Greathouse IV_, Sep 28 2015 %o A016177 (Magma) [8^n -7^n: n in [0..40]]; // _G. C. Greubel_, Nov 29 2024 %o A016177 (Python) %o A016177 def A016177(n): return pow(8,n) - pow(7,n) %o A016177 print([A016177(n) for n in range(41)]) # _G. C. Greubel_, Nov 29 2024 %Y A016177 Cf. A000420, A001018, A016140. %K A016177 nonn,easy %O A016177 0,3 %A A016177 _N. J. A. Sloane_