cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016187 Expansion of 1/((1-8*x)*(1-11*x)).

This page as a plain text file.
%I A016187 #29 Nov 14 2024 05:48:01
%S A016187 1,19,273,3515,42761,503139,5796673,65860555,741243321,8287894259,
%T A016187 92240578673,1023236299995,11324318776681,125117262357379,
%U A016187 1380687932442273,15222751628953835,167731742895202841,1847300971660916499,20338325086779563473,223865691142651054075,2463675524073768441801,27109654136848307635619
%N A016187 Expansion of 1/((1-8*x)*(1-11*x)).
%H A016187 G. C. Greubel, <a href="/A016187/b016187.txt">Table of n, a(n) for n = 0..950</a>
%H A016187 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (19,-88).
%F A016187 a(n) = (11^(n+1) - 8^(n+1))/3. - Lambert Klasen (lambert.klasen(AT)gmx.net), Feb 05 2005
%F A016187 a(n) = 11*a(n-1) + 8^n, a(0)=1. - _Vincenzo Librandi_, Feb 09 2011
%F A016187 a(n) = 19*a(n-1) - 88*a(n-2), a(0)=1, a(1)=19. - _Vincenzo Librandi_, Feb 09 2011
%F A016187 E.g.f.: (1/3)*(11*exp(11*x) - 8*exp(8*x)). - _G. C. Greubel_, Nov 14 2024
%t A016187 Table[(11^(n+1)-8^(n+1))/3, {n,0,40}] (* _Vladimir Joseph Stephan Orlovsky_, Feb 14 2011 *)
%t A016187 LinearRecurrence[{19,-88}, {1,19}, 40] (* _G. C. Greubel_, Nov 14 2024 *)
%o A016187 (PARI) for(n=1,10,print1((11^n-8^n)/3,","))
%o A016187 (PARI) MM(n, N) = local(M); M=matrix(n,n);for(i=1,n, for(j=1,n,if(i==j,M[i,j]=N,M[i,j]=1)));M
%o A016187 for(i=1,10,print1((MM(3,9)^i)[1,2],","))
%o A016187 (Magma) [(11^(n+1)-8^(n+1))/3: n in [0..40]]; // _G. C. Greubel_, Nov 14 2024
%o A016187 (SageMath)
%o A016187 A016187=BinaryRecurrenceSequence(19,-88,1,19)
%o A016187 print([A016187(n) for n in range(41)]) # _G. C. Greubel_, Nov 14 2024
%Y A016187 Cf. A016140.
%K A016187 nonn,easy
%O A016187 0,2
%A A016187 _N. J. A. Sloane_
%E A016187 More terms added by _G. C. Greubel_, Nov 14 2024