This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A016198 #26 Mar 26 2025 20:25:31 %S A016198 1,8,47,250,1281,6468,32467,162590,813461,4068328,20343687,101722530, %T A016198 508620841,2543120588,12715635707,63578244070,317891351421, %U A016198 1589457019248,7947285620527,39736429151210,198682147853201,993410743460308,4967053725690147,24835268645227950 %N A016198 Expansion of g.f. 1/((1-x)*(1-2*x)*(1-5*x)). %H A016198 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8,-17,10). %F A016198 a(n) = (25*5^n - 16*2^n + 3)/12. - _Bruno Berselli_, Feb 09 2011 %F A016198 a(n) = [(5^0-2^0) + (5^1-2^1) + ... + (5^n-2^n)]/3. - r22lou(AT)cox.net, Nov 14 2005 %F A016198 a(0)=1, a(n) = 5*a(n-1) + 2^(n+1) - 1. - _Vincenzo Librandi_, Feb 07 2011 %F A016198 From _Elmo R. Oliveira_, Mar 26 2025: (Start) %F A016198 E.g.f.: exp(x)*(25*exp(4*x) - 16*exp(x) + 3)/12. %F A016198 a(n) = 8*a(n-1) - 17*a(n-2) + 10*a(n-3). %F A016198 a(n) = A016127(n+1) - A003463(n+2). (End) %p A016198 a:=n->sum((5^(n-j)-2^(n-j))/3,j=0..n): seq(a(n), n=1..20); # _Zerinvary Lajos_, Jan 04 2007 %t A016198 Join[{a=1,b=8},Table[c=7*b-10*a+1;a=b;b=c,{n,60}]] (* _Vladimir Joseph Stephan Orlovsky_, Feb 06 2011 *) %Y A016198 Cf. A000225, A000392, A002275, A002452, A003462, A003463, A003464, A016123, A016125, A016208, A016209, A016218, A016256, A023000, A023001. %Y A016198 Cf. A016127. %K A016198 nonn,easy %O A016198 0,2 %A A016198 _N. J. A. Sloane_, Dec 11 1999 %E A016198 More terms from _Wesley Ivan Hurt_, May 05 2014