cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016203 Expansion of g.f. 1/((1-x)*(1-2*x)*(1-8*x)).

This page as a plain text file.
%I A016203 #33 Mar 26 2025 15:22:49
%S A016203 1,11,95,775,6231,49911,399415,3195575,25565111,204521911,1636177335,
%T A016203 13089422775,104715390391,837723139511,6701785148855,53614281256375,
%U A016203 428914250182071,3431314001718711,27450512014273975,219604096115240375,1756832768924020151,14054662151396355511
%N A016203 Expansion of g.f. 1/((1-x)*(1-2*x)*(1-8*x)).
%C A016203 4*a(n) is the total number of holes in a certain box fractal (start with 8 boxes, 0 hole) after n iterations. See illustration in link. - _Kival Ngaokrajang_, Jan 27 2015
%H A016203 Kival Ngaokrajang, <a href="/A016203/a016203.pdf">Illustration of initial terms</a>
%H A016203 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (11,-26,16).
%F A016203 a(n) = (4*8^(n+1) - 7*2^(n+1) + 3)/21. - _Mitch Harris_, Jun 27 2005; corrected by _Yahia Kahloune_, May 06 2013
%F A016203 a(0) = 1, a(n) = 8*a(n-1) + 2^(n+1) - 1. - _Vincenzo Librandi_, Feb 09 2011
%F A016203 From _Elmo R. Oliveira_, Mar 26 2025: (Start)
%F A016203 E.g.f.: exp(x)*(32*exp(7*x) - 14*exp(x) + 3)/21.
%F A016203 a(n) = 11*a(n-1) - 26*a(n-2) + 16*a(n-3).
%F A016203 a(n) = A016131(n+1) - A023001(n+2). (End)
%p A016203 a:=n->sum((8^(n-j)-2^(n-j))/6,j=0..n): seq(a(n), n=1..19); # _Zerinvary Lajos_, Jan 15 2007
%o A016203 (PARI) Vec(1/((1-x)*(1-2*x)*(1-8*x))+O(x^99)) \\ _Charles R Greathouse IV_, Sep 26 2012
%Y A016203 Cf. A016131, A023001.
%K A016203 nonn,easy
%O A016203 0,2
%A A016203 _N. J. A. Sloane_
%E A016203 More terms from _Elmo R. Oliveira_, Mar 26 2025