This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A016241 #29 Jan 31 2022 03:18:12 %S A016241 1,14,141,1246,10277,81270,624877,4710062,34985973,256995046, %T A016241 1871524733,13536029598,97364345989,697223254742,4974599780109, %U A016241 35386420442254,251090274984725,1777943916226758,12567479361589405,88703587219138430,625312500662044581 %N A016241 Expansion of 1/((1-x)*(1-6*x)*(1-7*x)). %H A016241 G. C. Greubel, <a href="/A016241/b016241.txt">Table of n, a(n) for n = 0..1000</a> %H A016241 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (14,-55,42). %F A016241 a(0)=1, a(1)=14, a(n) = 13*a(n-1) - 42*a(n-2) + 1. - _Vincenzo Librandi_, Feb 10 2011 %F A016241 a(n) = (1 - 6^(n+2) + 5*7^(n+1))/30. - _Vladimir Joseph Stephan Orlovsky_, Jul 21 2011 %F A016241 a(0)=1, a(1)=14, a(2)=141, a(n) = 14*a(n-1) - 55*a(n-2) + 42*a(n-3). - _Harvey P. Dale_, Aug 05 2011 %F A016241 E.g.f.: (1/30)*(exp(x) - 36*exp(6*x) + 35*exp(7*x)). - _G. C. Greubel_, Jan 30 2022 %t A016241 Table[(1 -6^(n+2) +5*7^(n+1))/30, {n, 40}] (* or *) CoefficientList[Series[1/((1-z)(1-6*z)(1-7*z)), {z, 0, 40}], z] (* _Vladimir Joseph Stephan Orlovsky_, Jul 21 2011 *) %t A016241 LinearRecurrence[{14,-55,42},{1,14,141},40] (* _Harvey P. Dale_, Aug 05 2011 *) %o A016241 (PARI) Vec(1/((1-x)*(1-6*x)*(1-7*x))+O(x^99)) \\ _Charles R Greathouse IV_, Sep 26 2012 %o A016241 (Magma) [(1 -6^(n+2) +5*7^(n+1))/30 : n in [0..40]]; // _G. C. Greubel_, Jan 30 2022 %o A016241 (Sage) [(1 -6^(n+2) +5*7^(n+1))/30 for n in (0..40)] # _G. C. Greubel_, Jan 30 2022 %Y A016241 Cf. A016218, A016228, A016249. %K A016241 nonn,easy %O A016241 0,2 %A A016241 _N. J. A. Sloane_