cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016295 Expansion of 1/((1-2x)(1-5x)(1-6x)).

This page as a plain text file.
%I A016295 #23 Dec 07 2019 12:18:20
%S A016295 1,13,117,905,6461,43953,289717,1868425,11861421,74423393,462815717,
%T A016295 2858273145,17556537181,107373722833,654414852117,3977351721065,
%U A016295 24118423433741,145982106270273,882250466222917
%N A016295 Expansion of 1/((1-2x)(1-5x)(1-6x)).
%H A016295 Harvey P. Dale, <a href="/A016295/b016295.txt">Table of n, a(n) for n = 0..1000</a>
%H A016295 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (13,-52,60).
%F A016295 a(n) = A016129(n+1) - A016127(n+1). - _Zerinvary Lajos_, Jun 05 2009
%F A016295 a(n) = 13*a(n-1) - 52*a(n-2) + 60*a(n-3), n >= 3.
%F A016295 a(n) = 11*a(n-1) - 30*a(n-2) + 2^n, n >= 2. - _Vincenzo Librandi_, Mar 16 2011
%F A016295 a(n) = 7*a(n-1) - 10*a(n-2) + 6^n, n >= 2. - _Vincenzo Librandi_, Mar 16 2011
%F A016295 a(n) = 8*a(n-1) - 12*a(n-2) + 5^n, n >= 2. - _Vincenzo Librandi_, Mar 16 2011
%F A016295 a(n) = -5^(n+2)/3 + 9*6^n + 2^n/3. - _R. J. Mathar_, Mar 18 2011
%t A016295 LinearRecurrence[{13,-52,60},{1,13,117},20] (* _Harvey P. Dale_, Mar 26 2016 *)
%o A016295 (Sage) [(6^n - 2^n)/4-(5^n - 2^n)/3 for n in range(2,21)] # _Zerinvary Lajos_, Jun 05 2009
%Y A016295 Cf. A016127, A016129, A016130, A016311, A016316, A016321, A016325. - _Zerinvary Lajos_, Jun 05 2009
%K A016295 nonn
%O A016295 0,2
%A A016295 _N. J. A. Sloane_