This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A016297 #39 May 04 2025 15:38:59 %S A016297 1,15,159,1475,12831,107835,888679,7239555,58567311,471793355, %T A016297 3790622199,30406356435,243657749791,1951296498075,15620544499719, %U A016297 125015218606115,1000376061956271,8004280061317995,64040598319145239,512356575696692595,4099011551292242751 %N A016297 Expansion of 1/((1-2*x) * (1-5*x) * (1-8*x)). %H A016297 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (15,-66,80). %F A016297 From _Vincenzo Librandi_, Mar 16 2011: (Start) %F A016297 a(n) = 15*a(n-1) - 66*a(n-2) + 80*a(n-3), n >= 3. %F A016297 a(n) = 13*a(n-1) - 40*a(n-2) + 2^n, n >= 2. (End) %F A016297 a(n) = 4*8^(n+1)/9 + 2^(n+1)/9 - 5^(n+2)/9. - _R. J. Mathar_, Mar 18 2011 %F A016297 From _Seiichi Manyama_, May 04 2025: (Start) %F A016297 a(n) = Sum_{k=0..n} 3^k * 2^(n-k) * binomial(n+2,k+2) * Stirling2(k+2,2). %F A016297 a(n) = Sum_{k=0..n} (-3)^k * 8^(n-k) * binomial(n+2,k+2) * Stirling2(k+2,2). (End) %F A016297 E.g.f.: exp(2*x)*(2 - 25*exp(3*x) + 32*exp(6*x))/9. - _Stefano Spezia_, May 04 2025 %Y A016297 Cf. A016127, A025999. %K A016297 nonn,easy %O A016297 0,2 %A A016297 _N. J. A. Sloane_