This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A016655 #125 Jun 09 2025 00:28:49 %S A016655 3,4,6,5,7,3,5,9,0,2,7,9,9,7,2,6,5,4,7,0,8,6,1,6,0,6,0,7,2,9,0,8,8,2, %T A016655 8,4,0,3,7,7,5,0,0,6,7,1,8,0,1,2,7,6,2,7,0,6,0,3,4,0,0,0,4,7,4,6,6,9, %U A016655 6,8,1,0,9,8,4,8,4,7,3,5,7,8,0,2,9,3,1,6,6,3,4,9,8,2,0,9,3,4,3 %N A016655 Decimal expansion of log(32) = 5*log(2). %C A016655 The function exp(x) has its maximum curvature where x = -(1/10)*5*log(2) = -log(2)/2 = 0.34657... - _Dimitri Papadopoulos_, Oct 27 2022 %C A016655 This maximum curvature occurs at the point with coordinates (x_M = -log(2)/2 = -(this constant)/10; y_M = sqrt(2)/2 = A010503) and is equal to 2*sqrt(3)/9 = A212886. - _Bernard Schott_, Dec 23 2022 %D A016655 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2. %H A016655 Harry J. Smith, <a href="/A016655/b016655.txt">Table of n, a(n) for n = 1..20000</a> %H A016655 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %H A016655 O. Espinosa, V. H. Moll, <a href="https://dx.doi.org/10.1023/A:1015706300169">On some integrals involving the Hurwitz Zeta function: Part 1</a>, Raman. J. 6 (2002) 159-188, eq. (5.7) %H A016655 Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, arXiv:2001.00578 [math.HO], 2020-2021. %H A016655 R. S. Melham and A. G. Shannon, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/33-1/melham2.pdf">Inverse Trigonometric Hyperbolic Summation Formulas Involving Generalized Fibonacci Numbers</a>, The Fibonacci Quarterly, Vol. 33, No. 1 (1995), pp. 32-40. %H A016655 Paul J. Nahin, <a href="https://doi.org/10.1007/978-3-030-43788-6">Inside interesting integrals</a>, Undergrad. Lecture Notes in Physics, Springer (2020), chap 7.1 %H A016655 H. M. Srivastava, M. L. Glasser, V. S. Adamchik, <a href="https://doi.org/10.4171/ZAA/982">Some definite integrals associated with the Riemann Zeta Function</a>, Z. Anal. Anw. 19 (3) (2000) 831-846 %H A016655 <a href="/index/Cu#curves">Index to sequences related to curves</a>. %H A016655 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %F A016655 log(2)/2 = (1 - 1/2 - 1/4) + (1/3 - 1/6 - 1/8) + (1/5 - 1/10 - 1/12) + ... [Jolley, Summation of Series, Dover (1961) eq (73)] %F A016655 Equals 10*log(2)/2 = 5*log(2) = 5*A002162, so 10*(1/2 - 1/4 + 1/6 - 1/8 + 1/10 - ... + (-1)^(k+1)/(2*k) + ...) = log(32). - _Eric Desbiaux_, Nov 26 2008 %F A016655 -log(2)/2 = lim_{n->oo} ((Sum_{k=2..n} arctanh(1/k)) - log(n)). - _Jean-François Alcover_, Aug 07 2014, after Steven Finch %F A016655 Equals log(sqrt(2)) with offset 0. - _Michel Marcus_, Feb 19 2017 %F A016655 Equals (5/4)*Sum_{k=1..4} (-1)^(k+1) gamma(0, k/4) where gamma(n,x) denotes the generalized Stieltjes constants. - _Peter Luschny_, May 16 2018 %F A016655 From _Amiram Eldar_, Jun 29 2020: (Start) %F A016655 log(2)/2 = arctanh(1/3) = arcsinh(1/sqrt(8)). %F A016655 log(2)/2 = Integral_{x=0..Pi/4} tan(x) dx. %F A016655 log(2)/2 = Sum_{k>=0} (-1)^k/(2*k+2). %F A016655 log(2)/2 = Sum_{k>=1} 1/A060851(k). (End) %F A016655 log(2)/2 = Sum_{k>=1} (-1)^(k+1) * arctanh(Lucas(2*k+3)/Fibonacci(2*k+3)^2) (Melham and Shannon, 1995). - _Amiram Eldar_, Jan 15 2022 %F A016655 Equals 10 * Integral_{1..oo} dx/(x*(1+x^2)). [Nahin] - _R. J. Mathar_, May 22 2024 %F A016655 Equals -10*Integral_{q=0..1} q*log(sin(Pi*q))dq. [Espinosa] - _R. J. Mathar_, Aug 13 2024 %F A016655 log(2)/2 = Sum_{k>=2} (-1)^(k) * arccoth(k). - _Antonio Graciá Llorente_, Sep 16 2024 %F A016655 -0.34657359... = Sum_{k>=0} zeta(2k)/((2k+1)*2^(2k)), [Srivastava (2.20)] - _R. J. Mathar_, Feb 12 2020 %F A016655 Equals 10*Integral_{x=0..1} Ei((1 + sqrt(2))*log(x)) - li(x) dx, where Ei is the exponential integral and li is the logarithmic integral. - _Kritsada Moomuang_, Jun 06 2025 %e A016655 3.465735902799726547086160607290882840377500671801276270603400047466968... %t A016655 RealDigits[5 N [Log[2], 100]] [[1]] (* _Vincenzo Librandi_, Jan 02 2016 *) %o A016655 (PARI) log(32) \\ _Charles R Greathouse IV_, Jan 24 2012 %o A016655 (Magma) [5*Log(2)]; // _Vincenzo Librandi_, Jan 02 2016 %Y A016655 Cf. A000045, A000032, A060851, A195909, A195913, A195697, A016460 (continued fraction). %Y A016655 Cf. A010503, A212886. %K A016655 nonn,cons %O A016655 1,1 %A A016655 _N. J. A. Sloane_