This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A016732 #21 Jul 10 2024 23:58:34 %S A016732 1,2,1,1,2,3,7,6,4,1,1,21,3,1,3,3,1,1,2,1,1,2,6,1,1,3,9,3,3,1,2,1,1,1, %T A016732 3,1,10,7,2,5,2,2,4,9,7,1,1,1,13,1,14,1,1,1,1,2,6,1,1,1,2,2,9,1,1,3,3, %U A016732 1,34,1,1,5,16,3,3,1,1,9,2,1,3,2,2,1,1,1 %N A016732 Continued fraction for log(4). %H A016732 Harry J. Smith, <a href="/A016732/b016732.txt">Table of n, a(n) for n = 0..19999</a> %H A016732 G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a> %e A016732 1.386294361119890618834464242... = 1 + 1/(2 + 1/(1 + 1/(1 + 1/(2 + ...)))). - _Harry J. Smith_, May 16 2009 %t A016732 ContinuedFraction[2*Log[2], 100] (* _G. C. Greubel_, Sep 15 2018 *) %o A016732 (PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(log(4)); for (n=1, 20000, write("b016732.txt", n-1, " ", x[n])); } \\ _Harry J. Smith_, May 16 2009 %o A016732 (Magma) ContinuedFraction(2*Log(2)); // _G. C. Greubel_, Sep 15 2018 %Y A016732 Cf. A016627 (decimal expansion). %K A016732 nonn,cofr %O A016732 0,2 %A A016732 _N. J. A. Sloane_ %E A016732 Offset changed by _Andrew Howroyd_, Jul 10 2024