This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A016759 #40 Sep 08 2022 08:44:41 %S A016759 1,2187,78125,823543,4782969,19487171,62748517,170859375,410338673, %T A016759 893871739,1801088541,3404825447,6103515625,10460353203,17249876309, %U A016759 27512614111,42618442977,64339296875,94931877133,137231006679,194754273881,271818611107,373669453125,506623120463 %N A016759 a(n) = (2*n + 1)^7. %H A016759 Vincenzo Librandi, <a href="/A016759/b016759.txt">Table of n, a(n) for n = 0..10000</a> %H A016759 Philippe A. J. G. Chevalier, <a href="https://www.researchgate.net/publication/236594822_On_the_discrete_geometry_of_physical_quantities">On the discrete geometry of physical quantities</a>, Preprint, 2012. %H A016759 Philippe A. J. G. Chevalier, <a href="https://www.researchgate.net/profile/Philippe_Chevalier2/publication/262067273">A "table of Mendeleev" for physical quantities?</a>, Slides from a talk, May 14 2014, Leuven, Belgium. %H A016759 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8,-28,56,-70,56,-28,8,-1). %F A016759 a(n) = A001015(A005408(n)). - _Michel Marcus_, Mar 07 2016 %F A016759 G.f.: (1+x)*(x^6 + 2178*x^5 + 58479*x^4 + 201244*x^3 + 58479*x^2 + 2178*x + 1)/(x-1)^8. - _R. J. Mathar_, Jul 07 2017 %F A016759 From _Amiram Eldar_, Oct 10 2020: (Start) %F A016759 Sum_{n>=0} 1/a(n) = 127*zeta(7)/128. %F A016759 Sum_{n>=0} (-1)^n/a(n) = 61*Pi^7/184320 (A258814). (End) %t A016759 Table[(2*n+1)^7, {n,0,30}] (* _G. C. Greubel_, Sep 15 2018 *) %t A016759 LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,2187,78125,823543,4782969,19487171,62748517,170859375},20] (* _Harvey P. Dale_, Jul 09 2019 *) %o A016759 (Magma) [(2*n+1)^7: n in [0..30]]; // _Vincenzo Librandi_, Sep 07 2011 %o A016759 (PARI) a(n) = (2*n+1)^7; \\ _Michel Marcus_, Mar 07 2016 %Y A016759 Cf. A001015, A005408, A215960, A258814. %K A016759 nonn,easy %O A016759 0,2 %A A016759 _N. J. A. Sloane_