This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A016762 #27 Sep 08 2022 08:44:41 %S A016762 1,59049,9765625,282475249,3486784401,25937424601,137858491849, %T A016762 576650390625,2015993900449,6131066257801,16679880978201, %U A016762 41426511213649,95367431640625,205891132094649,420707233300201,819628286980801,1531578985264449,2758547353515625,4808584372417849 %N A016762 a(n) = (2*n + 1)^10. %H A016762 Vincenzo Librandi, <a href="/A016762/b016762.txt">Table of n, a(n) for n = 0..10000</a> %H A016762 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1). %F A016762 a(n) = A016757(n)^2. - _Michel Marcus_, Dec 27 2016 %F A016762 From _G. C. Greubel_, Dec 27 2016: (Start) %F A016762 G.f.: (1 +59038*x +9116141*x^2 +178300904*x^3 +906923282*x^4 + 1527092468*x^5 +906923282*x^6 +178300904*x^7 +9116141*x^8 +59038*x^9 + x^10)/(1-x)^11. %F A016762 E.g.f.: (1 +59048*x +4823764*x^2 +42225920*x^3 +100635040*x^4 + 93590784*x^5 +40322688*x^6 +8724480*x^7 +963840*x^8 +51200*x^9 + 1024*x^10)*exp(x). (End) %F A016762 Sum_{n>=0} 1/a(n) = 31*Pi^10/2903040. - _Amiram Eldar_, Oct 11 2020 %t A016762 (2Range[0,20]+1)^10 (* _Harvey P. Dale_, Nov 06 2011 *) %o A016762 (Magma) [(2*n+1)^10: n in [0..20]]; // _Vincenzo Librandi_, Sep 07 2011 %o A016762 (PARI) for(n=0,20, print1((2*n+1)^10, ", ")) \\ _G. C. Greubel_, Dec 27 2016 %Y A016762 Cf. A016750, A016757. %K A016762 nonn,easy %O A016762 0,2 %A A016762 _N. J. A. Sloane_