cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016783 a(n) = (3*n+1)^7.

This page as a plain text file.
%I A016783 #29 Jul 08 2025 05:53:43
%S A016783 1,16384,823543,10000000,62748517,268435456,893871739,2494357888,
%T A016783 6103515625,13492928512,27512614111,52523350144,94931877133,
%U A016783 163840000000,271818611107,435817657216,678223072849,1028071702528
%N A016783 a(n) = (3*n+1)^7.
%C A016783 The inverse binomial transform is 1, 16383, 790776, 7578522, 27624240, 46539360, 36741600, 11022480, 0, 0,... (0 continued). - _R. J. Mathar_, May 07 2008
%H A016783 Vincenzo Librandi, <a href="/A016783/b016783.txt">Table of n, a(n) for n = 0..10000</a>
%H A016783 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8, -28, 56, -70, 56, -28, 8, -1).
%F A016783 G.f.: (1+16376x+692499x^2+3870352x^3+4890287x^4+1475736x^5+77101x^6 +128x^7)/ (1-x)^8. - _R. J. Mathar_, May 07 2008
%F A016783 E.g.f.: exp(x)*(2187*x^7+51030*x^6+387828*x^5+1151010*x^4 +1263087*x^3 +395388*x^2 +16383*x+1). - _Robert Israel_, Jun 15 2016
%F A016783 a(n) = A001015(A016777(n)). - _Michel Marcus_, Jun 16 2016
%F A016783 Sum_{n>=0} 1/a(n) = (147555*zeta(7) + 28*sqrt(3)*Pi^7)/295245. - _Ilya Gutkovskiy_, Jun 16 2016
%t A016783 Table[(3n+1)^7,{n,0,100}] (* _Mohammad K. Azarian_, Jun 15 2016 *)
%o A016783 (Magma) [(3*n+1)^7: n in [0..30]]; // _Vincenzo Librandi_, Sep 21 2011
%Y A016783 Cf. A001015, A016777.
%K A016783 nonn,easy
%O A016783 0,2
%A A016783 _N. J. A. Sloane_