This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A016838 #48 Sep 08 2022 08:44:41 %S A016838 9,49,121,225,361,529,729,961,1225,1521,1849,2209,2601,3025,3481,3969, %T A016838 4489,5041,5625,6241,6889,7569,8281,9025,9801,10609,11449,12321,13225, %U A016838 14161,15129,16129,17161,18225 %N A016838 a(n) = (4n + 3)^2. %C A016838 If Y is a fixed 2-subset of a (4n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting Y. - _Milan Janjic_, Oct 21 2007 %C A016838 A bisection of A016754. Sequence arises from reading the line from 9, in the direction 9, 49, ... in the square spiral whose vertices are the squares A000290. - _Omar E. Pol_, May 24 2008 %C A016838 Using (n,n+1) to generate a Pythagorean triangle with sides of lengths x<y<z, 3*z+4*x+5*y+2 = (2*x+1)^2 will give a(n) starting at n=1. - _J. M. Bergot_, Jul 17 2013 %H A016838 Vincenzo Librandi, <a href="/A016838/b016838.txt">Table of n, a(n) for n = 0..860</a> %H A016838 Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Two Enumerative Functions</a> %H A016838 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A016838 Denominators of first differences Zeta[2,(4n-1)/4]-Zeta[2,(4(n+1)-1)/4]. - _Artur Jasinski_, Mar 03 2010 %F A016838 From _George F. Johnson_, Oct 03 2012: (Start) %F A016838 G.f.: (9+22*x+x^2)/(1-x)^3. %F A016838 a(n+1) = a(n) + 16 + 8*sqrt(a(n)). %F A016838 a(n+1) = 2*a(n) - a(n-1) + 32 = 3*a(n) - 3*a(n-1) + a(n-2). %F A016838 a(n-1)*a(n+1) = (a(n)-16)^2; a(n+1) - a(n-1) = 16*sqrt(a(n)). %F A016838 a(n) = A016754(2*n+1) = (A004767(n))^2. %F A016838 (End) %F A016838 Sum_{n>=0} 1/a(n) = Pi^2/16 - G/2, where G is the Catalan constant (A006752). - _Amiram Eldar_, Jun 28 2020 %F A016838 Product_{n>=0} (1 - 1/a(n)) = Gamma(3/4)^2/sqrt(Pi) = A068465^2 * A087197. - _Amiram Eldar_, Feb 01 2021 %p A016838 A016838:=n->(4*n + 3)^2; seq(A016838(n), n=0..50); # _Wesley Ivan Hurt_, Feb 24 2014 %t A016838 Table[(4*n + 3)^2, {n, 0, 40}] (* _Vaclav Kotesovec_, Nov 14 2017 *) %o A016838 (Magma) [(4*n+3)^2: n in [0..50]]; // _Vincenzo Librandi_, Apr 26 2011 %o A016838 (PARI) a(n)=(4*n+3)^2 \\ _Charles R Greathouse IV_, Jun 17 2017 %Y A016838 Cf. A000290, A001539, A016742, A016754, A016802, A016814, A016826, A068465, A087197. %K A016838 nonn,easy %O A016838 0,1 %A A016838 _N. J. A. Sloane_