This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A016861 #86 Feb 16 2025 08:32:33 %S A016861 1,6,11,16,21,26,31,36,41,46,51,56,61,66,71,76,81,86,91,96,101,106, %T A016861 111,116,121,126,131,136,141,146,151,156,161,166,171,176,181,186,191, %U A016861 196,201,206,211,216,221,226,231,236,241,246,251,256,261,266,271,276,281 %N A016861 a(n) = 5*n + 1. %C A016861 Numbers ending in 1 or 6. %C A016861 Apart from initial terms, same as 5n-14. %C A016861 Complement of A047203; A027445(a(n)) mod 10 = 4. - _Reinhard Zumkeller_, Oct 23 2006 %C A016861 Campbell reference shows: "A graph on n vertices with at least 4n-9 edges is intrinsically linked. A graph on n vertices with at least 5n-14 edges is intrinsically knotted." - _Jonathan Vos Post_, Jan 18 2007 %C A016861 Central terms of the triangle in A153125: a(n) = A153125(2*n+1, n+1). - _Reinhard Zumkeller_, Dec 20 2008 %C A016861 For n > 2, also the number of (not necessarily maximal) cliques in the n-Moebius ladder graph. - _Eric W. Weisstein_, Nov 29 2017 %C A016861 For n > 3, also the number of (not necessarily maximal) cliques in the n-prism graph. - _Eric W. Weisstein_, Nov 29 2017 %C A016861 For n >= 1, a(n) is the size of any hexagonal chain graph with n cells. - _Christian Barrientos_, _Sarah Minion_, Mar 07 2018 %C A016861 For n >= 1, a(n) is the number of possible outcomes of the summation when using n dice. - _Bram Kole_, Dec 24 2018 %C A016861 Numbers congruent to 1 (mod 5). - _Muniru A Asiru_, Jan 01 2019 %C A016861 Numbers k such that the k-th Fibonacci number, A000045(k), and the k-th Lucas number, A000032(k), end with the same decimal digit. - _Amiram Eldar_, Apr 15 2023 %H A016861 Ivan Panchenko, <a href="/A016861/b016861.txt">Table of n, a(n) for n = 0..1000</a> %H A016861 J. Campbell, T. W. Mattman, R. Ottman, J. Pyzer, M. Rodrigues and S. Williams, <a href="https://arxiv.org/abs/math/0701422">Intrinsic knotting and linking of almost complete graphs</a>, arXiv:math/0701422 [math.GT], Jan 15 2007. %H A016861 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>. %H A016861 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Clique.html">Clique</a>. %H A016861 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MoebiusLadder.html">Moebius Ladder</a>. %H A016861 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrismGraph.html">Prism Graph</a>. %H A016861 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1). %F A016861 G.f.: (1+4*x)/(1-x)^2. %F A016861 Row sums of triangle A131843. - _Gary W. Adamson_, Jul 21 2007 %F A016861 a(n) = 2*a(n-1) - a(n-2) with a(0)=1, a(1)=6. - _Vincenzo Librandi_, Aug 01 2010 %F A016861 a(n) = A017293(n)/2 = A008587(n)+1. - _Wesley Ivan Hurt_, May 03 2014 %F A016861 E.g.f.: exp(x)*(1 + 5*x). - _Stefano Spezia_, Mar 23 2021 %F A016861 Sum_{n>=0} (-1)^n/a(n) = sqrt(2+2/sqrt(5))*Pi/10 + log(phi)/sqrt(5) + log(2)/5, where phi is the golden ratio (A001622). - _Amiram Eldar_, Apr 15 2023 %p A016861 A016861:=n->5*n+1; seq(A016861(n), n=0..100); # _Wesley Ivan Hurt_, May 03 2014 %t A016861 Range[1, 500, 5] (* _Vladimir Joseph Stephan Orlovsky_, May 26 2011 *) %t A016861 LinearRecurrence[{2, -1}, {6, 11}, {0, 20}] (* _Eric W. Weisstein_, Nov 29 2017 *) %t A016861 CoefficientList[Series[(1 + 4 x)/(-1 + x)^2, {x, 0, 20}], x] (* _Eric W. Weisstein_, Nov 29 2017 *) %o A016861 (Haskell) %o A016861 a016861 = (+ 1) . (* 5) %o A016861 a016861_list = [1, 6 ..] -- _Reinhard Zumkeller_, Jun 16 2013 %o A016861 (PARI) a(n)=5*n+1 \\ _Charles R Greathouse IV_, Jul 10 2016 %o A016861 (GAP) a:=List([0..60],n->5*n+1);; Print(a); # _Muniru A Asiru_, Jan 01 2019 %Y A016861 Cf. A093562 ((5, 1) Pascal, column m=1). %Y A016861 Cf. A000566 (partial sums). %Y A016861 Cf. A000032, A000045, A001622, A131843, A342819. %K A016861 nonn,easy %O A016861 0,2 %A A016861 _N. J. A. Sloane_, Dec 11 1996 %E A016861 More terms from _Reinhard Zumkeller_, Oct 23 2006