This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A016921 #138 Jul 26 2024 21:16:31 %S A016921 1,7,13,19,25,31,37,43,49,55,61,67,73,79,85,91,97,103,109,115,121,127, %T A016921 133,139,145,151,157,163,169,175,181,187,193,199,205,211,217,223,229, %U A016921 235,241,247,253,259,265,271,277,283,289,295,301,307,313,319,325,331 %N A016921 a(n) = 6*n + 1. %C A016921 Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 22 ). %C A016921 Also solutions to 2^x + 3^x == 5 (mod 7). - _Cino Hilliard_, May 10 2003 %C A016921 Except for 1, exponents n > 1 such that x^n - x^2 - 1 is reducible. - _N. J. A. Sloane_, Jul 19 2005 %C A016921 Let M(n) be the n X n matrix m(i,j) = min(i,j); then the trace of M(n)^(-2) is a(n-1) = 6*n - 5. - _Benoit Cloitre_, Feb 09 2006 %C A016921 If Y is a 3-subset of an (2n+1)-set X then, for n >= 3, a(n-1) is the number of 3-subsets of X having at least two elements in common with Y. - _Milan Janjic_, Dec 16 2007 %C A016921 All composite terms belong to A269345 as shown in there. - _Waldemar Puszkarz_, Apr 13 2016 %C A016921 First differences of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 773", based on the 5-celled von Neumann neighborhood. - _Robert Price_, May 23 2016 %C A016921 For b(n) = A103221(n) one has b(a(n)-1) = b(a(n)+1) = b(a(n)+2) = b(a(n)+3) = b(a(n)+4) = n+1 but b(a(n)) = n. So-called "dips" in A103221. See the Avner and Gross remark on p. 178. - _Wolfdieter Lang_, Sep 16 2016 %C A016921 A (n+1,n) pebbling move involves removing n + 1 pebbles from a vertex in a simple graph and placing n pebbles on an adjacent vertex. A two-player impartial (n+1,n) pebbling game involves two players alternating (n+1,n) pebbling moves. The first player unable to make a move loses. The sequence a(n) is also the minimum number of pebbles such that any assignment of those pebbles on a complete graph with 3 vertices is a next-player winning game in the two player impartial (k+1,k) pebbling game. These games are represented by A347637(3,n). - _Joe Miller_, Oct 18 2021 %C A016921 Interleaving of A017533 and A017605. - _Leo Tavares_, Nov 16 2021 %D A016921 Avner Ash and Robert Gross, Summing it up, Princeton University Press, 2016, p. 178. %H A016921 G. C. Greubel, <a href="/A016921/b016921.txt">Table of n, a(n) for n = 0..1000</a> %H A016921 Kayla Barker, Mia DeStefano, Eugene Fiorini, Michael Gohn, Joe Miller, Jacob Roeder, and Tony W. H. Wong, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL27/Wong/wong43.html">Generalized Impartial Two-player Pebbling Games on K_3 and C_4</a>, J. Int. Seq. (2024) Vol. 27, Issue 5, Art. No. 24.5.8. See p. 3. %H A016921 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>. %H A016921 William A. Stein, <a href="http://wstein.org/Tables/dimskg0n.gp">Dimensions of the spaces S_k(Gamma_0(N))</a>. %H A016921 William A. Stein, <a href="http://wstein.org/Tables/">The modular forms database</a>. %H A016921 Leo Tavares, <a href="/A016921/a016921.jpg">Illustration: Hexagonal Lines</a>. %H A016921 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1). %F A016921 a(n) = 6*n + 1, n >= 0 (see the name). %F A016921 G.f.: (1+5*x)/(1-x)^2. %F A016921 A008615(a(n)) = n. - _Reinhard Zumkeller_, Feb 27 2008 %F A016921 A157176(a(n)) = A013730(n). - _Reinhard Zumkeller_, Feb 24 2009 %F A016921 a(n) = 4*(3*n-1) - a(n-1) (with a(0)=1). - _Vincenzo Librandi_, Nov 20 2010 %F A016921 E.g.f.: (1 + 6*x)*exp(x). - _G. C. Greubel_, Sep 18 2019 %F A016921 a(n) = A003215(n) - 6*A000217(n-1). See Hexagonal Lines illustration. - _Leo Tavares_, Sep 10 2021 %F A016921 From _Leo Tavares_, Oct 27 2021: (Start) %F A016921 a(n) = 6*A001477(n-1) + 7 %F A016921 a(n) = A016813(n) + 2*A001477(n) %F A016921 a(n) = A017605(n-1) + A008588(n-1) %F A016921 a(n) = A016933(n) - 1 %F A016921 a(n) = A008588(n) + 1. (End) %F A016921 Sum_{n>=0} (-1)^n/a(n) = Pi/6 + sqrt(3)*arccoth(sqrt(3))/3. - _Amiram Eldar_, Dec 10 2021 %e A016921 From _Ilya Gutkovskiy_, Apr 15 2016: (Start) %e A016921 Illustration of initial terms: %e A016921 o %e A016921 o o o %e A016921 o o o o %e A016921 o o o o o o %e A016921 o o o o o o o %e A016921 o o o o o o o o o %e A016921 o o o o o o o o o o %e A016921 n=0 n=1 n=2 n=3 %e A016921 (End) %p A016921 a[1]:=1:for n from 2 to 100 do a[n]:=a[n-1]+6 od: seq(a[n], n=1..56); # _Zerinvary Lajos_, Mar 16 2008 %t A016921 Range[1, 500, 6] (* _Vladimir Joseph Stephan Orlovsky_, May 26 2011 *) %o A016921 (Haskell) %o A016921 a016921 = (+ 1) . (* 6) %o A016921 a016921_list = [1, 7 ..] -- _Reinhard Zumkeller_, Jan 15 2013 %o A016921 (PARI) a(n)=6*n+1 \\ _Charles R Greathouse IV_, Mar 22 2016 %o A016921 (Python) for n in range(0,10**5):print(6*n+1) # _Soumil Mandal_, Apr 14 2016 %o A016921 (Magma) [6*n+1: n in [0..60]]; // _G. C. Greubel_, Sep 18 2019 %o A016921 (GAP) List([0..60], n-> 6*n+1); # _G. C. Greubel_, Sep 18 2019 %Y A016921 Cf. A093563 ((6, 1) Pascal, column m=1). %Y A016921 Cf. A000567 (partial sums), A002476 (primes), A005408, A008588, A016813, A016933, A016945, A016957, A017281, A017533, A128470, A158057, A161700, A161705, A161709, A161714. %Y A016921 a(n) = A007310(2*(n+1)); complement of A016969 with respect to A007310. %Y A016921 Cf. A287326 (second column). %Y A016921 Cf. A000217, A003215. %Y A016921 Cf. A001477, A017605. %K A016921 nonn,easy %O A016921 0,2 %A A016921 _N. J. A. Sloane_