cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016935 a(n) = (6*n + 2)^3.

This page as a plain text file.
%I A016935 #32 Sep 08 2022 08:44:41
%S A016935 8,512,2744,8000,17576,32768,54872,85184,125000,175616,238328,314432,
%T A016935 405224,512000,636056,778688,941192,1124864,1331000,1560896,1815848,
%U A016935 2097152,2406104,2744000,3112136
%N A016935 a(n) = (6*n + 2)^3.
%C A016935 The generating function is 8 times the g.f. of A016779. - _R. J. Mathar_, May 07 2008
%H A016935 Vincenzo Librandi, <a href="/A016935/b016935.txt">Table of n, a(n) for n = 0..2000</a>
%H A016935 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F A016935 a(n) = 8*A016779(n). - _R. J. Mathar_, May 07 2008
%F A016935 Sum_{n>=0} 1/a(n) = Pi^3 / (324*sqrt(3)) + 13*zeta(3)/216. - _Amiram Eldar_, Oct 02 2020
%F A016935 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - _Wesley Ivan Hurt_, Oct 02 2020
%F A016935 G.f.: 8*(1+60*x+93*x^2+8*x^3)/(-1+x)^4. - _Wesley Ivan Hurt_, Oct 02 2020
%e A016935 a(1) = (6*1 + 2)^3 = 8^3 = 512.
%t A016935 (6*Range[0,30]+2)^3 (* or *) LinearRecurrence[{4,-6,4,-1},{8,512,2744,8000},30] (* _Harvey P. Dale_, Aug 23 2019 *)
%o A016935 (Magma) [(6*n+2)^3: n in [0..50]]; // _Vincenzo Librandi_, May 04 2011
%Y A016935 Cf. A002117, A016779, A016911, A016923, A016933, A016959, A016971.
%K A016935 nonn,easy
%O A016935 0,1
%A A016935 _N. J. A. Sloane_