This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A016941 #22 Mar 29 2022 02:54:41 %S A016941 512,134217728,20661046784,512000000000,5429503678976,35184372088832, %T A016941 165216101262848,618121839509504,1953125000000000,5416169448144896, %U A016941 13537086546263552,31087100296429568,66540410775079424,134217728000000000,257327417311663616,472161363286556672 %N A016941 a(n) = (6*n + 2)^9. %H A016941 Vincenzo Librandi, <a href="/A016941/b016941.txt">Table of n, a(n) for n = 0..2000</a> %H A016941 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (10,-45,120,-210,252,-210,120,-45,10,-1). %F A016941 a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10). - _Harvey P. Dale_, Sep 21 2013 %F A016941 From _Amiram Eldar_, Mar 29 2022: (Start) %F A016941 a(n) = A016933(n)^9 = A016935(n)^3. %F A016941 a(n) = 2^9*A016785(n). %F A016941 Sum_{n>=0} 1/a(n) = 809*Pi^9/(14285134080*sqrt(3)) + 9841*zeta(9)/10077696. (End) %t A016941 (6*Range[0,20]+2)^9 (* or *) LinearRecurrence[ {10,-45,120,-210,252,-210,120,-45,10,-1},{512,134217728,20661046784,512000000000,5429503678976,35184372088832,165216101262848,618121839509504,1953125000000000,5416169448144896},20] (* _Harvey P. Dale_, Sep 21 2013 *) %o A016941 (Magma) [(6*n+2)^9: n in [0..25]]; // _Vincenzo Librandi_, May 05 2011 %Y A016941 Cf. A016785, A016933, A016934, A016935, A016936, A016937, A016938, A016939, A016940. %K A016941 nonn,easy %O A016941 0,1 %A A016941 _N. J. A. Sloane_