This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A016993 #65 Feb 16 2025 08:32:33 %S A016993 1,8,15,22,29,36,43,50,57,64,71,78,85,92,99,106,113,120,127,134,141, %T A016993 148,155,162,169,176,183,190,197,204,211,218,225,232,239,246,253,260, %U A016993 267,274,281,288,295,302,309,316,323,330,337,344,351,358,365,372,379 %N A016993 a(n) = 7*n + 1. %C A016993 For n > 3, also the number of (not necessarily maximal) cliques in the n-web graph. - _Eric W. Weisstein_, Nov 29 2017 %C A016993 The number of notes in a musical scale of n octaves. - _Geoffrey Trueman Falk_, Feb 16 2023 %H A016993 Vincenzo Librandi, <a href="/A016993/b016993.txt">Table of n, a(n) for n = 0..5000</a> %H A016993 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A016993 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Clique.html">Clique</a> %H A016993 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WebGraph.html">Web Graph</a> %H A016993 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1). %F A016993 a(n) = 7*n + 1. %F A016993 G.f.: (1+6*x)/(1-x)^2. %F A016993 From _Elmo R. Oliveira_, Mar 07 2024: (Start) %F A016993 a(n) = 2*a(n-1) - a(n-2). %F A016993 E.g.f.: (1 + 7*x)*exp(x). (End) %p A016993 A016993:=n->7*n+1: seq(A016993(n), n=0..70); # _Wesley Ivan Hurt_, Nov 01 2014 %t A016993 7*Range[0, 55] + 1 (* _Alonso del Arte_, Oct 26 2014 *) %t A016993 Table[7 n + 1, {n, 0, 20}] (* _Eric W. Weisstein_, Nov 29 2017 *) %t A016993 LinearRecurrence[{2, -1}, {8, 15}, {0, 20}] (* _Eric W. Weisstein_, Nov 29 2017 *) %t A016993 CoefficientList[Series[(1 + 6 x)/(-1 + x)^2, {x, 0, 20}], x] (* _Eric W. Weisstein_, Nov 29 2017 *) %o A016993 (Magma) [7*n+1: n in [0..60]]; // _Vincenzo Librandi_, May 28 2011 %o A016993 (Haskell) %o A016993 a016993 = (+ 1) . (* 7) %o A016993 a016993_list = [1, 8 ..] -- _Reinhard Zumkeller_, Jan 25 2013 %o A016993 (PARI) a(n)=7*n+1 \\ _Charles R Greathouse IV_, Jul 10 2016 %Y A016993 Cf. A093564 (column 1). %Y A016993 Cf. A131844, A008589. %K A016993 nonn,easy %O A016993 0,2 %A A016993 _N. J. A. Sloane_