This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017066 #49 Dec 06 2024 15:35:25 %S A017066 0,64,256,576,1024,1600,2304,3136,4096,5184,6400,7744,9216,10816, %T A017066 12544,14400,16384,18496,20736,23104,25600,28224,30976,33856,36864, %U A017066 40000,43264,46656,50176,53824,57600,61504,65536,69696,73984,78400,82944,87616,92416,97344,102400 %N A017066 a(n) = (8*n)^2. %H A017066 Vincenzo Librandi, <a href="/A017066/b017066.txt">Table of n, a(n) for n = 0..10000</a> %H A017066 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A017066 G.f.: -64*x*(1+x)/(x-1)^3. - _R. J. Mathar_, Jul 14 2016 %F A017066 a(n) = A000290(8*n) = A008590(n)^2 = A000290(A008590(n)). %F A017066 From _Amiram Eldar_, Jan 25 2021: (Start) %F A017066 Sum_{n>=1} 1/a(n) = Pi^2/384. %F A017066 Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/768. %F A017066 Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/8)/(Pi/8). %F A017066 Product_{n>=1} (1 - 1/a(n)) = sin(Pi/8)/(Pi/8) = 4*sqrt(2-sqrt(2))/Pi. (End) %F A017066 From _Elmo R. Oliveira_, Dec 06 2024: (Start) %F A017066 E.g.f.: 64*exp(x)*x*(1 + x). %F A017066 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. %F A017066 a(n) = n*A152691(n) = 2*A244082(n) = A016802(2*n). (End) %t A017066 LinearRecurrence[{3, -3, 1}, {0, 64, 256}, 50] (* _Vincenzo Librandi_, Feb 10 2012 *) %o A017066 (Magma) [(8*n)^2: n in [0..35]]; // _Vincenzo Librandi_, Jul 10 2011 %o A017066 (PARI) a(n)=(8*n)^2 \\ _Charles R Greathouse IV_, Jun 17 2017 %Y A017066 Cf. A000290, A008590, A016802, A152691, A244082. %K A017066 nonn,easy %O A017066 0,2 %A A017066 _N. J. A. Sloane_