This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017089 #51 Mar 21 2024 00:45:26 %S A017089 2,10,18,26,34,42,50,58,66,74,82,90,98,106,114,122,130,138,146,154, %T A017089 162,170,178,186,194,202,210,218,226,234,242,250,258,266,274,282,290, %U A017089 298,306,314,322,330,338,346,354,362,370,378,386,394,402,410,418,426 %N A017089 a(n) = 8*n + 2. %C A017089 Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 33 ). %C A017089 Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 81 ). %C A017089 First differences of A002939. - _Aaron David Fairbanks_, May 13 2014 %H A017089 Vincenzo Librandi, <a href="/A017089/b017089.txt">Table of n, a(n) for n = 0..5000</a> %H A017089 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>. %H A017089 William A. Stein, <a href="http://wstein.org/Tables/dimskg0n.gp">Dimensions of the spaces S_k(Gamma_0(N))</a>. %H A017089 William A. Stein, <a href="http://wstein.org/Tables/dimskg0new.gp">Dimensions of the spaces S_k^{new}(Gamma_0(N))</a>. %H A017089 William A. Stein, <a href="http://wstein.org/Tables/">The modular forms database</a>. %H A017089 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1). %F A017089 a(n) = 8*n+2; a(n) = 2*a(n-1)-a(n-2). - _Vincenzo Librandi_, May 28 2011 %F A017089 Sum_{n>=0} (-1)^n/a(n) = (Pi + 2*log(cot(Pi/8)))/(8*sqrt(2)). - _Amiram Eldar_, Dec 11 2021 %F A017089 From _Elmo R. Oliveira_, Mar 17 2024: (Start) %F A017089 G.f.: 2*(1+3*x)/(1-x)^2. %F A017089 E.g.f.: 2*exp(x)*(1 + 4*x). %F A017089 a(n) = 2*A016813(n) = A008590(n) + 2. (End) %p A017089 A017089:=n->8*n+2; seq(A017089(n), n=0..50); # _Wesley Ivan Hurt_, May 13 2014 %t A017089 Range[2, 1000, 8] (* _Vladimir Joseph Stephan Orlovsky_, May 27 2011 *) %o A017089 (Magma) [8*n+2: n in [0..60]]; // _Vincenzo Librandi_, May 28 2011 %o A017089 (Haskell) %o A017089 a017089 = (+ 2) . (* 8) %o A017089 a017089_list = [2, 10 ..] -- _Reinhard Zumkeller_, Jun 07 2015 %o A017089 (PARI) a(n) = 8*n+2; \\ _Michel Marcus_, Sep 17 2015 %Y A017089 Cf. A002939, A008589, A008590, A016813, A016993, A017005, A017017, A017077. %K A017089 nonn,easy %O A017089 0,1 %A A017089 _N. J. A. Sloane_, Dec 11 1996