cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017115 a(n) = (8*n + 4)^3.

This page as a plain text file.
%I A017115 #21 May 28 2025 00:57:23
%S A017115 64,1728,8000,21952,46656,85184,140608,216000,314432,438976,592704,
%T A017115 778688,1000000,1259712,1560896,1906624,2299968,2744000,3241792,
%U A017115 3796416,4410944,5088448,5832000,6644672,7529536,8489664,9528128,10648000,11852352,13144256,14526784,16003008
%N A017115 a(n) = (8*n + 4)^3.
%H A017115 Vincenzo Librandi, <a href="/A017115/b017115.txt">Table of n, a(n) for n = 0..10000</a>
%H A017115 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F A017115 G.f.: 64*(1+x)*(x^2 + 22*x + 1)/(x-1)^4. - _R. J. Mathar_, Jul 14 2016
%F A017115 From _Amiram Eldar_, Apr 25 2023: (Start)
%F A017115 a(n) = A017113(n)^3.
%F A017115 a(n) = 2^3*A016827(n) = 2^6*A016755(n).
%F A017115 Sum_{n>=0} 1/a(n) = 7*zeta(3)/512.
%F A017115 Sum_{n>=0} (-1)^n/a(n) = Pi^3/2048. (End)
%F A017115 E.g.f.: 64*exp(x)*(1 + 26*x + 36*x^2 + 8*x^3). - _Stefano Spezia_, May 27 2025
%t A017115 LinearRecurrence[{4, -6, 4, -1},{64, 1728, 8000, 21952},24] (* _Ray Chandler_, Aug 04 2015 *)
%o A017115 (Magma) [(8*n+4)^3: n in [0..35] ]; // _Vincenzo Librandi_, Jul 21 2011
%Y A017115 Cf. A002117, A016755, A016827, A017113.
%K A017115 nonn,easy
%O A017115 0,1
%A A017115 _N. J. A. Sloane_