This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017123 #22 Apr 25 2023 05:57:43 %S A017123 4194304,743008370688,204800000000000,8293509467471872, %T A017123 131621703842267136,1196683881290399744,7516865509350965248, %U A017123 36279705600000000000,143746751770690322432,488595558857835544576,1469170321634239709184,3996373778857415671808,10000000000000000000000 %N A017123 a(n) = (8*n + 4)^11. %H A017123 Vincenzo Librandi, <a href="/A017123/b017123.txt">Table of n, a(n) for n = 0..10000</a> %H A017123 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1). %F A017123 G.f.: ( 4194304*(1+x)*(x^10 + 177134*x^9 + 46525293*x^8 + 1356555432*x^7 + 9480267666*x^6 + 19107752148*x^5 + 9480267666*x^4 + 1356555432*x^3 + 46525293*x^2 + 177134*x+1) ) / ( (x-1)^12 ). - _R. J. Mathar_, May 08 2015 %F A017123 From _Amiram Eldar_, Apr 25 2023: (Start) %F A017123 a(n) = A017113(n)^11. %F A017123 a(n) = 2^11*A016835(n) = 2^22*A016763(n). %F A017123 Sum_{n>=0} 1/a(n) = 2047*zeta(11)/8589934592. %F A017123 Sum_{n>=0} (-1)^n/a(n) = 50521*Pi^11/62342309294899200. (End) %t A017123 (8*Range[0,20]+4)^11 (* _Harvey P. Dale_, Jun 11 2016 *) %o A017123 (Magma) [(8*n+4)^11: n in [0..15] ]; // _Vincenzo Librandi_, Jul 21 2011 %Y A017123 Cf. A013669, A016763, A016835, A017113. %K A017123 nonn,easy %O A017123 0,1 %A A017123 _N. J. A. Sloane_