This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017162 #29 Dec 06 2024 13:13:33 %S A017162 0,81,324,729,1296,2025,2916,3969,5184,6561,8100,9801,11664,13689, %T A017162 15876,18225,20736,23409,26244,29241,32400,35721,39204,42849,46656, %U A017162 50625,54756,59049,63504,68121,72900,77841,82944,88209,93636,99225,104976,110889,116964,123201 %N A017162 a(n) = (9*n)^2. %H A017162 Vincenzo Librandi, <a href="/A017162/b017162.txt">Table of n, a(n) for n = 0..10000</a> %H A017162 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A017162 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=81, a(2)=324. - _Harvey P. Dale_, Nov 06 2012 %F A017162 G.f.: -81*x*(1+x)/(x-1)^3. - _R. J. Mathar_, Jul 17 2014 %F A017162 From _Amiram Eldar_, Jan 25 2021: (Start) %F A017162 Sum_{n>=1} 1/a(n) = Pi^2/486. %F A017162 Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/972. %F A017162 Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/9)/(Pi/9). %F A017162 Product_{n>=1} (1 - 1/a(n)) = sin(Pi/9)/(Pi/9). (End) %F A017162 From _Elmo R. Oliveira_, Dec 02 2024: (Start) %F A017162 E.g.f.: 81*exp(x)*x*(1 + x). %F A017162 a(n) = 81*A000290(n) = A008591(n)^2 = A000290(A008591(n)). (End) %t A017162 (9*Range[0,30])^2 (* or *) LinearRecurrence[{3,-3,1},{0,81,324},40] (* _Harvey P. Dale_, Nov 06 2012 *) %o A017162 (Magma) [(9*n)^2: n in [0..35]]; // _Vincenzo Librandi_, Jul 22 2011 %o A017162 (PARI) a(n)=(9*n)^2 \\ _Charles R Greathouse IV_, Jun 17 2017 %Y A017162 Cf. A000290, A008591. %K A017162 nonn,easy %O A017162 0,2 %A A017162 _N. J. A. Sloane_