This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017270 #31 Nov 30 2024 16:23:22 %S A017270 0,100,400,900,1600,2500,3600,4900,6400,8100,10000,12100,14400,16900, %T A017270 19600,22500,25600,28900,32400,36100,40000,44100,48400,52900,57600, %U A017270 62500,67600,72900,78400,84100,90000,96100,102400,108900,115600,122500,129600,136900,144400 %N A017270 a(n) = (10*n)^2. %H A017270 Vincenzo Librandi, <a href="/A017270/b017270.txt">Table of n, a(n) for n = 0..10000</a> %H A017270 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A017270 a(n) = a(n-1) + 200*n - 100, n > 0 ; a(0)=0. - _Miquel Cerda_, Oct 30 2016 %F A017270 G.f.: 100*x*(1 + x)/(1 - x)^3. - _Ilya Gutkovskiy_, Oct 30 2016 %F A017270 a(n) = 100*A000290(n). - _Michel Marcus_, Oct 30 2016 %F A017270 From _Amiram Eldar_, Jan 25 2021: (Start) %F A017270 Sum_{n>=1} 1/a(n) = Pi^2/600. %F A017270 Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/1200. %F A017270 Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/10)/(Pi/10). %F A017270 Product_{n>=1} (1 - 1/a(n)) = sin(Pi/10)/(Pi/10) = 5*(sqrt(5)-1)/(2*Pi). (End) %F A017270 From _Elmo R. Oliveira_, Nov 30 2024: (Start) %F A017270 E.g.f.: 100*x*(1 + x)*exp(x). %F A017270 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. %F A017270 a(n) = A008592(n)^2 = A000290(A008592(n)) = A016850(2*n). (End) %t A017270 LinearRecurrence[{3,-3,1},{0,100,400},40] (* _Harvey P. Dale_, Oct 02 2017 *) %o A017270 (Magma) [(10*n)^2: n in [0..40]]; // _Vincenzo Librandi_, Jul 28 2011 %o A017270 (PARI) a(n)=(10*n)^2 \\ _Charles R Greathouse IV_, Jun 17 2017 %Y A017270 Cf. A000290, A008592, A016850. %K A017270 nonn,easy %O A017270 0,2 %A A017270 _N. J. A. Sloane_