This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A017282 #41 Dec 25 2022 03:52:42 %S A017282 1,121,441,961,1681,2601,3721,5041,6561,8281,10201,12321,14641,17161, %T A017282 19881,22801,25921,29241,32761,36481,40401,44521,48841,53361,58081, %U A017282 63001,68121,73441,78961,84681,90601,96721,103041,109561,116281,123201 %N A017282 a(n) = (10*n + 1)^2. %H A017282 Vincenzo Librandi, <a href="/A017282/b017282.txt">Table of n, a(n) for n = 0..10000</a> %H A017282 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A017282 G.f.: (1+118*x+81*x^2)/(1-x)^3. - _Bruno Berselli_, Jul 30 2011 %F A017282 a(n) = a(n-1) + 40*(5*n-2), n > 0; a(0)=1. - _Miquel Cerda_, Oct 30 2016 %F A017282 a(n) = A017281(n)^2. - _Michel Marcus_, Oct 30 2016 %F A017282 E.g.f.: (1 +120*x +100*x^2)*exp(x). - _G. C. Greubel_, Dec 24 2022 %t A017282 (* Programs from _Michael De Vlieger_, Mar 30 2017 *) %t A017282 Table[(10 n+1)^2, {n, 0, 35}] %t A017282 FoldList[#1 + 200 #2 - 80 &, 1, Range@ 35] %t A017282 CoefficientList[Series[(1+118x+81x^2)/(1-x)^3, {x,0,35}], x] (* End *) %t A017282 LinearRecurrence[{3,-3,1},{1,121,441},40] (* _Harvey P. Dale_, Sep 21 2017 *) %o A017282 (Magma) [(10*n+1)^2: n in [0..35]]; // _Vincenzo Librandi_, Jul 30 2011 %o A017282 (PARI) for(n=0, 35, print1((10*n+1)^2", ")); \\ _Bruno Berselli_, Jul 30 2011 %o A017282 (SageMath) [(10*n+1)^2 for n in range(51)] # _G. C. Greubel_, Dec 24 2022 %Y A017282 Sequences of the form (m*n+1)^2: A000012 (m=0), A000290 (m=1), A016754 (m=2), A016778 (m=3), A016814 (m=4), A016862 (m=5), A016922 (m=6), A016994 (m=7), A017078 (m=8), A017174 (m=9), this sequence (m=10), A017402 (m=11), A017534 (m=12), A134934 (m=14). %Y A017282 Cf. A017281. %K A017282 nonn,easy %O A017282 0,2 %A A017282 _N. J. A. Sloane_ %E A017282 More terms from _Bruno Berselli_, Jul 30 2011