cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017352 (10*n+6)^12.

This page as a plain text file.
%I A017352 #16 Sep 08 2022 08:44:42
%S A017352 2176782336,281474976710656,95428956661682176,4738381338321616896,
%T A017352 89762301673555234816,951166013805414055936,6831675453247426400256,
%U A017352 37133262473195501387776,163674647745587512938496,612709757329767363772416
%N A017352 (10*n+6)^12.
%H A017352 Vincenzo Librandi, <a href="/A017352/b017352.txt">Table of n, a(n) for n = 0..10000</a>
%H A017352 <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
%F A017352 From _Wesley Ivan Hurt_, Oct 28 2014: (Start)
%F A017352 G.f.: 4096*(531441 + 68712568003*x + 22404773377311*x^2 + 859316242027205*x^3 + 8673413722667370*x^4 + 30946876621062078*x^5 + 44108689210889694*x^6 + 25884027384156618*x^7 + 5972410776815445*x^8 + 467792550632655*x^9 + 8736164034131*x^10 + 13841233953*x^11 + 4096*x^12) / (1-x)^13.
%F A017352 a(n) = 13*a(n-1)-78*a(n-2)+286*a(n-3)-715*a(n-4)+1287*a(n-5)-1716*a(n-6)+1716*a(n-7)-1287*a(n-8)+715*a(n-9)-286*a(n-10)+78*a(n-11)-13*a(n-12)+a(n-13).
%F A017352 a(n) = (10*n+6)^12 = A008456(A017341(n)). (End)
%p A017352 A017352:=n->(10*n+6)^12: seq(A017352(n), n=0..10); # _Wesley Ivan Hurt_, Oct 28 2014
%t A017352 (10 Range[0, 10] + 6)^12 (* _Wesley Ivan Hurt_, Oct 28 2014 *)
%t A017352 CoefficientList[Series[4096 (531441 + 68712568003 x + 22404773377311 x^2 + 859316242027205 x^3 + 8673413722667370 x^4 + 30946876621062078 x^5 + 44108689210889694 x^6 + 25884027384156618 x^7 + 5972410776815445 x^8 + 467792550632655 x^9 + 8736164034131 x^10 + 13841233953 x^11 + 4096 x^12)/(1 - x)^13, {x, 0, 30}], x] (* _Wesley Ivan Hurt_, Oct 28 2014 *)
%o A017352 (Magma) [(10*n+6)^12: n in [0..10]]; // _Vincenzo Librandi_, Aug 03 2011
%Y A017352 Cf. A008456 (12th Powers), A017341 (10n+6).
%K A017352 nonn,easy
%O A017352 0,1
%A A017352 _N. J. A. Sloane_